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ABSTRACT 
 
In the context of multi-phase flow in porous media, one of the questions is if the flow is 
dominated by viscous or by capillary forces. It appears as a paradox that the structure of 
Darcy's law is that of a viscous law but that mobilization of oil trapped in pores of 
water-wet rock is controlled by capillary numbers that are typically of the order of 10-6 - 
10-4 indicating a capillary dominated behaviour.  
 
The confusion originates from two the structure of Darcy’s law and from the definition 
of the capillary number. Darcy's law and it's 2-phase extension have a structure of a 
viscous flow law. Capillary effects come into play via the capillary pressure function, 
which can often be ignored in reservoir engineering simulations. However, capillary 
pressure effects and viscous coupling between the two phases are lumped into the 
relative permeabilities. Darcy’s 2-phase extension appears to be a purely viscous law, 
but this is incorrect. 
 
The capillary number relates viscous forces to capillary forces. On a macroscopic level, 
it is unclear what the magnitude and direction of these forces are. On a microscopic 
level, however, the capillary number can be clearly defined. The capillary number for 
residual, disconnected phases is of the order of 10-6, but for continuous phases, it is 
shown that capillary forces and viscous forces are of the same order of magnitude. The 
paradox seizes to exist: in equilibrium situations, for continuous phases, viscous forces 
are in balance with capillary forces and the capillary number equals unity, while during 
flooding, viscous forces exceed capillary forces. In Darcy’s law, this is all lumped into 
the relative permeability and into the capillary pressure. 
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INTRODUCTION  
 
One of the questions that emerges very often in the context of multi-phase flow in 
porous media is whether the flow is controlled by viscous or by capillary forces. An 
apparent paradox is that the structure of Darcy's law is that of a viscous law but typical 
capillary numbers of 10-6 - 10-3 indicate a capillary dominated behaviour. This is an 
apparent contradiction, which is sometimes named the viscous-capillary paradox. In 
this paper, we approach this apparent contradiction from two sides: from a macroscopic 
picture and from a microscopic picture. When comparing both pictures, inconsistencies 
and incomplete descriptions are found which are in the end responsible for the paradox. 
A key figure in our investigation is the force balance between viscous and capillary 
forces in multiphase flow. 
 
THE MACROSCOPIC PICTURE 
 
The flow of a single phase in a porous medium is described via Darcy's law: 
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where v is the Darcy velocity, which is the flux Q normalized by the cross sectional area 
A. K is the permeability of the porous medium,  is the viscosity of the fluid, and 

xp  /  is the pressure gradient. In a strict sense, Darcy's law is valid for slow, steady, 
one-dimensional single-phase flow through a homogeneous and isotropic sand [1].  
 
Darcy's law from Eq. (1) is a macroscopic model valid on the scale that is large 
compared with the individual pore scale [2] but smaller than the gradients of the 
averaged velocity or pressure [3]. The rock appears as a continuous medium [4] with the 
properties porosity, , and permeability, K. Darcy's law employs continuum mechanics 
concepts and the parameters like porosity and permeability but also the velocity are the 
result of a volume average [2] over the representative elementary volume (REV) [4].  
 
Darcy's law has the structure of a viscous law very similar to that of the Poiseuille flow 
through a pipe with circular cross section and radius R [5] for which 
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In pore network modeling [20], the flow on the pore scale is abstracted to flow in 
channels with geometric cross sections, which is essentially Poiseuille type of flow [5]. 
Even though the flux through pore channels can be described by an expression like in 
Eq. (1), the term K would then be a local hydraulic conductivity like R2/8 like in Eq. (2) 
for a cylindrical channel and only become a rock permeability when averaged over a 
volume that is large compared to the pore scale [2]. 
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For 2-phase flow, the description of Darcy's law is extended to a set of 2 equations for 
water (w) and oil (o) 
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where kr,w and kr,o are the (phenomenological) relative permeabilities for water and oil, 
respectively. These functions are dependent on the saturation of their phase. Since the 
oil saturation So = 1 - Sw, the saturation dependence can be expressed via the water 
saturation Sw only,  i.e. kr,w = kr,w (Sw) and kr,o = kr,o (Sw). Even though the relative 
permeability parameters are phenomenological, their dependencies on rock and fluid 
parameters like wettability can be understood as a volume average over a complicated 
microscopic behaviour that depends on the spatial distribution of the two phases inside 
the pore structure.  
 
In the case of 2-phase flow, the viscous structure of the flow equations has not changed 
compared to single phase flow. When considering the example of a steady state 
experiment with a constant saturation of oil and water and continuous fluid phases for 
oil and water, there is a constant pressure drop over the oil and the water phase, and 
fluid flow in oil and water is still subject to a viscous flow equation. For each phase, the 
viscous forces are balanced by the externally applied pressure drops. In the Darcy 
formalism there is no viscous coupling between the two fluid phases. Indirectly, the 
impact of viscous coupling of the two fluid phases are contained in the relative 
permeability functions [1].  
 
Compared to single phase flow, two-phase flow is subject to viscous and capillary 
forces. The capillary forces originate from the microscopic curvature between the oil 
and water phase which will be discussed in the microscopic picture in the next section in 
more detail. On the macroscopic scale, this curvature does not exist as individual pores 
are not visible (continuum medium approach). To stay consistent in the macroscopic 
picture, in Eqns. (3) and (4), the relation of the phase pressures of oil, po, and water, pw, 
is defined as the capillary pressure saturation function  
 

,)( wcwoc Spppp   (5) 

 
which is dependent on the water saturation Sw. Phenomenological macroscopic capillary 
pressure functions like that by Brooks and Corey [6] do not contain microscopic 
quantities. While for specific cases the capillary pressure function is important1, for 
many reservoir engineering problems the macroscopic capillary pressure function can 
be neglected and the flow through the reservoir can be described by Darcy’s law in 
combination with conservation of mass.  
 

                                                 
1 In specific situations the capillary pressure cannot be neglected, such as for counter current imbibition 
[7], for tight gas (near-wellbore multiphase flow damage [18]), for oil wet reservoirs (water hold up by oil 
wet capillary threshold pressure), for gas reservoirs which produce water (mobile transition zone during 
production) and for gas condensate fields (banking [19]). 
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If we consider an oil-filled reservoir at connate water saturation, gravity (buoyancy) 
forces are balanced by capillary forces. The hydrostatic pressure balances the capillary 
pressure, which is linked to saturations via the capillary pressure curve. In the horizontal 
direction, there is no flow and thus there are no net horizontal forces.  
 
If the reservoir is produced by water injection, oil will start flowing due to the external 
pressure drop. At the water-oil displacement front, saturations are rapidly changing. The 
saturation at the displacement front can be obtained from the fractional flow equation, 
and is in the end a function of the relative permeabilities of oil and water. The transient 
flow can be described using Eq. (3) and (4). 
 
When the reservoir has been flooded and saturations have become constant, the fluids 
are flowing at their end-point relative permeabilities and we have reached an 
equilibrium situation. By increasing the pressure drop, no additional oil will be 
produced once true residual oil saturation has been reached.  
 
The capillary pressure and relative permeability saturation functions limit the accessible 
saturation range of this formalism to rowcw SSS ,, 1  where cwS ,  is the connate water 

saturation and roS ,  is the residual oil saturation. In this phenomenological description, 

the saturation at which phases get disconnected is not defined. While in water wet 
sandstones, the water phase is believed to be always connected, oil gets disconnected at 
some point. Saturation ranges beyond cwS ,  and roS ,  cannot be accessed via this 

formalism in a direct way. But it is well known that an increase in flow rate, a more 
viscous displacing fluid (e.g. polymer water-flooding) and reduction in interfacial 
tension by surfactants can produce additional oil beyond the initial roS ,  (capillary de-

saturation [8]). In the conventional formalism, this phenomenon can only be 
parameterized by defining new capillary pressure and relative permeability functions 
and adjusting roS ,  to the new conditions.  

 
The capillary de-saturation curve [8,9,10] describes the relationship between residual 
saturation of the wetting and non-wetting phase and the capillary number [8] as 
displayed in Figure 1. 
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Figure 1: Capillary de-saturation curve: Residual saturation of the wetting and non-wetting 
phase as function of the capillary number Nc (sketch after [7]). 

 
 
There is no consensus on how to define the capillary number. A contributing factor to 
this is that the physical argumentation for defining the capillary number is often absent. 
A very frequently used definition of the capillary number depends on the viscosity , 
the Darcy velocity v and the interfacial tension  [3,11] 2: 
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Sometimes the porosity is included in the capillary number )/(vNc   [5,12], and 

sometimes the contact angle )cos/( vNc   [13]. From a macroscopic point of view, 

including a contact angle is somewhat questionable, since contact angles are not 
defined. By substitution of the Darcy velocity using Darcy’s law one obtains  
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Sometimes, the relative permeability term is excluded in Eq. (7) [12]. Other definitions 
for the capillary numbers found in literature are  
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2 There are various notations for the capillary number. The most popular ones are Ca and Nc. 
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from [14] [15] and [16] respectively. The capillary numbers only compare pressures and 
a conversion to forces acting in the reservoir is not straightforward, if possible at all. It 
is impossible to determine the magnitude and direction of these forces on fluid-fluid 
interphases on the basis of ‘upscaled’ quantities such as the Darcy velocity and capillary 
pressure. 
  
Capillary numbers range from 10-5 to 10-7 for typical pressures, permeabilities and 
interfacial tensions, depending on the definition that is being used.  
But this is in contradiction with the previous statement that capillary forces can often be 
neglected in reservoir engineering problems. Based on a capillary numbers of 10-5, the 
capillary forces are much greater than the viscous forces! 
 
At first sight, the interfacial tension does not play a role in the Darcy description. It is 
implicitly hidden in the capillary pressure function and in most cases capillary pressure 
can be neglected. But for enhanced oil recovery (EOR) mechanisms, the important 
parameter is increasing the capillary number, which can be tweaked by increasing the 
viscosity or by decreasing the interfacial tension. A direct consequence of this is a lower 
residual oil saturation, and straighter relative permeability functions [8]. This example 
shows that capillary forces are lumped in the relative permeability curves.  
 
In short, in the conventional macroscopic formalism viscous forces appear to dominate 
capillary forces, which can be seen from the structure of Darcy’s law: an applied 
pressure drop results in viscous flow that disturbs the capillary equilibrium. This picture 
is inconsistent with the typical values for the capillary number, which show that the 
capillary forces are much larger than the viscous forces.  
 
The first argument for explaining the paradox comes from the first assumption that 
Darcy’s law is a viscous law which is invalid. In the Darcy description, viscous and 
capillary forces are not clearly separated. While Darcy’s law does not contain viscous 
coupling or capillary pressure, these factors are embedded in the relative permeability 
functions. The microscopic picture presented in the next section provides the second 
argument that solves the paradox. 
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THE MICROSCOPIC PICTURE 
 
On the microscopic scale, e.g. inside a pore, the continuum description of Darcy's law is 
not valid as discussed in detail in the previous section. In the tortuous network of pores 
and throats, the actual flow field is very complex and subject to a description via Stokes 
flow [17]. Some of the macroscopic properties from the continuum description can be 
obtained by e.g. averaging microscopic models and quantities over a macroscopic 
volume V.  
 
Other properties are only available on the microscopic scale because an explicit 
microscopic length scale is involved in the picture. One of these quantities is the 
capillary pressure. On the microscopic scale, the capillary forces are approximated via 
the capillary pressure as a result of interfacial tension  between the two immiscible 
fluids and a curvature  that is caused by the fluid distribution inside the pore structure. 
The curvature can be expressed as  = 1/R where R is an effective curvature radius that 
is on the order of the pore scale. The capillary pressure then becomes [8] 
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The radius of curvature is a true microscopic quantity that cannot be scaled relative to a 
unit volume.  
 
In fluid mechanics, for phenomena involving drops, bubbles and flow phenomena 
involving interfaces similar to those in a porous medium, the capillary number  
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which is the ratio of viscous over capillary forces is a relevant scaling group [3,5].  
 

 
Figure 2: Residual oil blob sitting in the middle of a water wet pore 

 
If we consider an oil blob that is snapped of during water flooding (Fig. 2), we can 
estimate the viscous and the capillary forces on the stationary oil droplet. The viscous 
force of a liquid on a solid sphere is given by Stokes’ law [14]. 
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The capillary force that resists shape change is determined by Young’s-Laplace 
equation  
 

,84
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with R the radius of the droplet, A the cross-sectional area and   the interfacial tension 
between the two fluids. The droplet starts to break-up once 
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which is (within an order of magnitude) the microscopic capillary number, where it has 
to be pointed out that the interstitial velocity in the pores u is related to the Darcy 
velocity v via u=v/. 
 
Substituting typical values for interstitial velocity v (1 ft/day ≡ 3·10-6 m/s), viscosity of 
the flowing phase (1·10-3 Pas), porosity (0.25) and interfacial tension (30·10-3 N/m) 
gives indeed numbers of the order of 10-7. So, viscous forces need to be orders of 
magnitude higher to mobilize the oil droplet through the pore throat. In reality, the oil 
blob is produced at lower interstitial velocities (lower capillary numbers), which can be 
seen from the capillary desaturation curve (see Figure 1), where the residual oil 
saturation already decreases at capillary numbers of 10-3 for water wet media. Droplets 
will start to break-up once the critical capillary number is exceeded. For viscosity ratios 
between 1-10, this critical number lies between 0.1 and 1 [21]. The capillary number at 
which droplets start to deform can be lower and oil blob will be produced at lower 
capillary numbers due to the interaction of the position and deformation of the oil blob 
and the flow field in the pores. Summarizing: for residual oil blobs, the definition of the 
capillary number and its order of magnitude are in agreement with what has been 
published in literature. 
 
Let us now consider the (rather hypothetical) case of an oil-wet reservoir that is being 
waterflooded. Oil is flowing in the corners and water is flowing in the middle of the 
pores, see a schematic picture in Figure 3. To account for two phases being present in a 
‘pore’ we have chosen a triangular duct [20]. The water exerts a drag force on the oil 
film (viscous coupling), and oil will be produced until a molecular thin layer is present 
on the pore surface. During the process, the difference in phase pressure, Po-Pw, is 
adapted so that it matches the curvature of the oil water interphase. While oil is 
produced, the viscous forces exceed the capillary forces and the capillary number is 
larger than 1. In equilibrium the capillary forces are in balance with the viscous forces 
(for connected phases only) and hence the capillary number is equal to 1. 
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Figure 3: Schematic picture of water flowing through an oil-wet duct. Oil is produced via film flow, as 

the viscous forces always exceed the capillary forces. 
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DISCUSSION AND CONCLUSION 
 
A viscous flow law from Eqns. (3) and (4) and a capillary number 1cN  are 

apparently contradictory. The contradiction arises because of two invalid assumptions.  
 
First, although Darcy’s law seems to be a purely viscous law of two non-interacting 
fluid phases, viscous coupling and capillary effects are lumped into the relative 
permeabilities. For very low interfacial tensions (near-miscible floods) the relative 
permeabilities become straight lines. In the macroscopic view, capillary forces play a 
significant role through the relative permeabilities (microscopic fluid distributions are 
determined via the capillary equilibrium, and the fluid distributions have a major impact 
on the hydraulic conductivities). In the macroscopic description there is no clear 
separation between viscous and capillary effects.  
 
Second, the definition of the capillary number is valid for the situation where residual, 
disconnected blobs of fluid are surrounded by another fluid and typical values are 10-7 
to 10-5. Prior to snap-off of these residual ligaments, the capillary forces exceeded the 
viscous forces and Nc<1. For cases where both phases are still connected, in equilibrium 
the viscous forces are in balance with capillary forces and capillary numbers are of the 
order of unity. During displacement of one phase with another, viscous forces are larger 
than capillary forces and Nc>1. In the microscopic view, capillary forces determine the 
equilibrium distribution of the fluids in each pore, depending on the actual phase 
pressures.  
 
The authors want to stress that the use of the capillary number is extremely useful, for 
example in the capillary desaturation curve. At the same time one should care to use 
rather undefined quantities to explain very complex fluid mechanical processes. As the 
oil industry is going towards more complex production mechanisms such as low 
salinity/designer water flooding, polymer flooding and surfactant flooding, fundamental 
understanding of the processes occurring at the pore scale is needed as well as the 
translation to common reservoir engineering quantities as relative permeability and 
capillary pressure. 
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