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Abstract. We use the method of density functional hydrodynamics (DFH) to model compositional multiphase 

flows in natural cores at the pore-scale. In previous publications the authors demonstrated that DFH covers 

many diverse pore-scale phenomena, starting from those inherent in RCA and SCAL measurements, and 

extending to much more complex EOR processes. We perform the pore-scale modelling of multiphase flow 

scenarios by means of the direct hydrodynamic (DHD) simulator, which is a numerical implementation of the 

DFH. In the present work, we consider the problem of numerical modelling of fluid transport in pore systems 

with voids and channels when the range of pore sizes exceed several orders of magnitude. Such situations are 

well known for carbonate reservoirs, where narrow pore channels of micrometer range can coexist and 

interconnect with vugs of millimeter or centimeter range. In such multiscale systems one cannot use the 

standard DFH approach for pore-scale modeling, primarily because the needed increase in scanning resolution 

that is required to resolve small pores adequately, leads to a field of view reduction that compromises the 

representation of large pores. In order to address this challenge, we suggest a novel approach, in which 

transport in small-size pores is described by an upscaled effective model, while the transport in large pores is 

still described by the DFH. The upscaled effective model is derived from the exact DFH equations using 

asymptotic expansion in respect to small-size characterization parameter. This effective model retains the 

properties of DFH like chemical and multiphase transport, thus making it applicable to the same range of 

phenomena as DFH itself. The model is based on the concept that the transport is driven by gradients of 

chemical potentials of the components present in the mixture. This is a significant generalization of the Darcy 

transport model since the proposed new model incorporates diffusion transport in addition to the usual 

pressure-driven transport. In the present work we provide several multiphase transport numerical examples 

including: a) upscaling to chemical potential drive (CPD) model, b) combined modeling of large pores by 

DFH and small pores by CPD. 

1 Introduction  

In recent years we witnessed an increasing level of 

capability and acceptance of digital rock as a 

complementary tool in core analysis. This tendency is 

following a gradual increase in both resolution of rock 

imaging techniques and the power of high-performance 

computing that are the key to unlock the potential in the 

core analysis by digital rock. As an answer to the growth 

in the hardware possibilities various modeling methods 

applicable in digital rock also evolve; see reviews in [1-

6]. One of such methods, which the authors are actively 

developing, is the density functional hydrodynamics 

(DFH). 

DFH is essentially a pore scale multi-phase, multi-

compositional approach. As it has been demonstrated in 

previous publications [7-10], various multiphase 

compositional problems can be described in the frame of 

the DFH. The DFH method has found many applications 

in direct pore-scale modeling of various hydrodynamic 

and petrophysical phenomena on digital rock models 

obtained by X-ray micro-CT and SEM [11-21]. The 

practical usefulness of a standard workflow is very much 

dependent on the possibility to resolve necessary pore 

structure adequately, as well as on the rock sample being 

representative for the considered formation. There are 

specific ways to meet both of these requirements, but in 

this work, we discuss the resolution problem only. 

 In many cases the natural rocks are characterized by 

a wide range of pore sizes making the choice of X-ray 

micro-CT resolution very difficult if not altogether 

impossible. Indeed, if pores of both micrometer and 

millimeter range coexist within one piece of rock then, at 

present, it is not always possible to develop 3D model of 

rock microstructure, which can represent all pores. In 

situations like this we propose a combined approach, 

when several 3D digital rock models having different 

resolutions are integrated into one synthetic model. 

Combined multiscale approach is also being developed in 

the frame of pore-network modelling [1], but we follow 

image-based approach as it is inherent in DFH. High-

resolution sub-models with explicitly resolved small 
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pores are used for direct modeling of transport processes 

by DFH to obtain effective flow characteristics. Then 

these results are incorporated into low-resolution model 

with explicit imaging of large pores while small pores are 

not necessarily resolved. At this stage the hydrodynamics 

in large pores is still simulated directly by DFH, while the 

transport in matrix is simulated using the previously 

computed effective transport properties. All these 

operations are done by the DFH pore-scale simulator 

called DHD (Schlumberger). 

 In effect, the described procedure represents 

upscaling from pore-scale DFH equations to macroscopic 

porous medium equations. As concerned with the single-

phase flow, our idea is similar to the one described in [22, 

23]. However, in addition to being applicable in general 

multiphase compositional scenarios, the rigorous 

upscaling starting with the DFH equations leads to the 

transport equations, which constitute the significant 

extension of the Darcy model. The driving force for the 

fluid flow happens to be gradients of chemical potentials 

of fluid chemical components that gives the model its 

name Chemical Potential Drive (CPD). Because change 

in pressure is directly related to change in chemical 

potential, this new model is consistent with pressure-drive 

Darcy approach as will be shown below. On the other 

hand, the CPD approach covers certain physical 

phenomena outside the scope of the Darcy model. Here 

are two examples in relation to the latter assertion. First, 

there are cases, when definition of pressure in confined 

fluid is problematic, e.g., when gas mean free path length 

is comparable to pore size (high Knudsen number), or 

liquid in pores with significant disjoining pressure; at the 

same time, the definition of chemical potential is still 

correct in both said instances. Second, there is an easy to 

derive exact solution for two-phase water-oil transport 

velocities in a hydrophilic circular capillary 
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where the water and oil velocities 
w o,u u  are defined as 

phase fluxes per capillary cross-section, 
sw so,   are the 

shear viscosities of water and oil, respectively, R  is the 

capillary radius, r  is the radius of the central region 

occupied by oil, and G  is the pressure gradient. An 

important observation following from Eqs. (1), (2) is that 

the transport of oil is influenced by viscosity of water, 

because oil, being the central phase, is carried by water. 

This cross-phase friction is in direct contradiction with the 

routine concept of phase permeabilities indicating the 

possible role of cross-terms in phase permeability matrix 

[24].  At the same time the cross-component influence is 

inherent in CPD, as it will be demonstrated below. 

Limitations of the Darcy law are discussed in the literature 

and deviations from it are observed in both high-accuracy 

4D visualization of pore-scale fluid dynamics as well as 

in numerical simulations of pore-scale flows [25]. One 

may expect more deviations when dealing with complex 

fluids. 

In Sec. II we give a brief reminder of the DFH 

equations, as well as a derivation of upscaling from DFH 

to CPD. Numerical demonstration of combined DFH and 

CPD models is presented in Sec. III. The overall summary 

and discussion of results is in Sec. IV. 

 The summation over repeated indices is implied 

everywhere. The indices , , 1,2,3a b c=  are related to 

Cartesian coordinates 
ax , the indices , , 1,...,i j k M=  

are related to chemical components in the fluid mixture. 

We consider isothermal processes, so the temperature is 

assumed to be fixed, and dependence of certain variables 

on temperature is omitted. We use short symbols for 

partial derivatives: / a

a x =   and /t t =  , where t  

is time. 

2 Theoretical concepts and equations 

2.1 Density functional hydrodynamics 

 

Here we provide only some of the basic definitions 

necessary to evolve the step from the DFH equations to 

the CPD ones. A detailed exposition of the DFH can be 

found in [7-10]. 

We consider continuum mechanics description of a 

mixture of M  chemical components present inside a 

spatial region D  having volume 
DV . The region 

contains 
i DN   of each type of molecules. To avoid large 

numbers, the quantities 
i DN  are measured in moles. In 

case of homogeneous and static mixture we define 

chemical component molar densities by /i i D Dn N V= . If 

the mixture is inhomogeneous and possibly evolving, one 

can define in  as a dynamic variable at time t  and spatial 

point 
ax   by establishing a small volume limit, such as 

0
( , ) lim ( / )

D

a

i i i D D
V

n n t x N V
→

= = . Like elsewhere in 

continuum mechanics, the small volume limit is 

understood as the convergent procedure with 
DV  being 

small, but still larger than the molecular volume. 

By counting the flow rate of molecules through a 

small area inside the mixture, one can define the 

component flux ( , )b

i a i aI I t x= . The component fluxes 

are used to calculate the mass flux 
a i iaI m I= , where 

im  is the molar mass of the ith component. By introducing 

mass density i im n =  it is possible to define mass 

velocity 1

a av I −= . Component flux 
i aI  can be 

represented as a combination of transport term i an v  and 

diffusion flux i aQ : 

 

i a i a iaI n v Q= +     (3) 

 



 

 

 

where by definition diffusion flux does not influence net 

mass transfer 0i i am Q = . We assume the existence of the 

Helmholtz energy functional 

 

*[ ]D D i

D D

F F n dV f d A


= = +  ,  (4) 

1( ) 2 ( )i i j k a i a jf n n n n −= +   ,        (5) 

 

where D  is the boundary surface of the region D  (when 

the region is finite),  ( )if f n=  is the bulk Helmholtz 

energy density of homogeneous mixture, 
i j  is the 

positive-definite symmetric matrix,  and * * ( )if f n=  is 

the surface Helmholtz energy density, which is not equal 

to zero if D  is a contact surface with some immobile 

solid. It is convenient to recollect certain thermodynamic 

equations involving Helmholtz energy 

 

i if n p= − , i id f d n= , i id p n d= , (6) 

 

where i  is the chemical potential of the ith component, 

and p  is the hydrostatic pressure. 

The model in Eqs. (4) and (5) is adequate for 

description of many important phenomena involving 

multiphase multicomponent mixtures. Up to now, it was 

successfully used to simulate multiphase multicomponent 

phenomena with or without phase transitions, surfactants, 

and mixtures with solid phases such as gas hydrates or 

solid particles [9-21, 26]. 

Now we list the DFH statements necessary to move 

forward to CPD. 

The multiphase compositional transport in case of 

isothermal flow of fluids with Newtonian rheology is 

governed by the following equations written in a form of 

conservation laws for chemical components and 

momentum 

 

( ) 0t i a i a ian n v Q + + = ,   (7) 

( ) ( ) 0t a b a b abv v v p  + − = ,    (8) 

 

together with the relations 
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and subject to the boundary conditions at D , when it is 

a contact surface with some immobile solid 

 

0av =  ,       (14) 
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where abp  is the stress tensor, ab  is the static stress 

tensor, ab  is the viscous stress tensor, i is the 

generalized chemical potential of the ith mixture 

component, v  and s  are nonnegative bulk and shear 

viscosity coefficients, respectively, i jD  is the 

nonnegative definite symmetric matrix subject to 

0i j jD m = , al  is the internal normal unit vector at the 

boundary surface D , and ab  is the Kronecker symbol. 

We also note that there is the identity 

b ab i a in =−   , which reduces to 0b ab =  in 

static equilibrium. 

It is possible to derive the differential equation for 

the total energy (that includes both Helmholtz and kinetic 

energy) with energy flux 
aJ  and dissipation rate function 

 : 

 
1( 2 )t a a a av v J  − + =− + ,    (17)  

1

2
a b b a i j t i a j ab b i i aJ v v v n n v I  = −   − + , (18)

 
ab a b ia av Q =−  +         (19) 

  

In accordance with Eqs. (11), (12), and (22) the inequality 

0   holds. Also, in accordance with Eqs. (14)-(16) the 

energy flux vanishes at the boundary D :  0a

al J = . 

This signifies that in absence of external sources and 

forces the total energy decreases 

1( 2 ) 0a a

D

d
v v dV

d t
 −+    in consistency with the 

second law of thermodynamics. 

2.2 Upscaling to macroscopic transport in porous 

medium: chemical potential drive 

 

Now we consider transition from microscopic DFH 

to macroscopic CPD description of fluid transport in 

porous medium. We use variables related to microscopic 

pore-scale description in parallel to similar variables 

related to macroscopic description. If a  is a microscopic 

variable, then similar macroscopic variable is denoted by 

symbol a  . The latter variable is usually obtained from 

the former by using certain averaging procedure. For 

example, we define component molar density by 

0
( , ) lim ( / )

D

a

i i i D D
V

n n t x N V
→

= = , where the pore 

volume DV  is now sufficiently large to contain 

representative piece of saturated porous medium. The 

respective spatial region D  encompasses pores belonging 

to a porous medium region    containing both solid 

skeleton and pores. This porous medium region   is 

supposed to be representative of pore structure in 



 

 

 

statistical terms but not necessarily identical to the 

neighbor regions of porous medium. This is different from 

homogenization approach with periodic geometry of pore 

system [27].  The volumes of two regions D  and   are 

related by 
DV V =  , where ( )ax =  is porosity. The 

processes in a porous medium are assumed to be 

sufficiently slow in respect to the changing macroscopic 

component molar densities, so that the local distribution 

of chemical components and phases in pores are close to 

the equilibrium. Therefore, it is possible to define the 

macroscopic Helmholtz energy density 

0
lim ( / )
D

D D
V

f F V
→

=  as a function of parameters 
in  

since the equilibrium state of the mixture is determined by 

the functional (4) together with the components 

conservation condition 
i D i

D

N n d V=  . Using f  it is 

possible to define macroscopic chemical potentials 

i

i

f

n



=


. 

Let us study transport through the spatial porous 

region D. Transport is possible only if there are free 

subregions of the boundary D , which are not 

associated with solid surface. We designate 

f sD =  , where 
f , 

s  are free and solid 

boundary, respectively.  At the free boundary 
f  the so-

called free boundary condition for velocity is used in the 

form of 0b

b al v =  instead of the no-slip condition in 

Eq. (14) of the DFH. The diffusion transport is generated 

by gradients of generalized chemical potentials a i   

(see Eq. (12)). The convective transport is determined by 

mass velocity, which under current assumptions satisfies 

the reduced momentum equation 

 

b ab i a in =   .         (20) 

 

with mixed no-slip and free boundary conditions. In terms 

of differential operations Eq. (20) can be represented as 

follows 

 

ab b a i a iL v n=− =−   ,   (21)     

 

where the left side is positive elliptic self-adjoint operator 

in 
2 ( )L D  acting on the velocity field. It admits the 

solution with a Green’s function, which can also be 

represented in operator form 

 

( )ab ab

a b i a iv G G n=− =−   .       (22) 

 

Here the integral operator in abG  is positive definite, and 

also ab baG G=  . Now combining Eqs. (12) and (22) we 

arrive to the expression for the component flux generated 

by the gradients a i 
 

 

( )ab

ia i a i a i j ab i j b jI n v Q n G n D= + =− +   .  (23) 

 

Averaging Eq. (23) over different cross-sections of the 

region   produces the macroscopic flux of components 

generated by gradients of chemical potentials (Chemical 

Potential Drive or CPD) 

 
ab

ia i a i j b jI I K = =−  ,    (24) 

where the transport matrix ( )ab ab c

i j i jK K x=  is positive 

definite and satisfies the symmetry conditions 
ab ba ab

i j i j j iK K K= = . The component conservation 

equation together with the CPD transport law in Eq. (24) 

that constitutes the closed formulation of macroscopic 

fluid transport model is as follows

  

( ) 0t i a i an I + = .      (25) 

Direct calculations lead to the macroscopic equivalent of 

Eq. (17) 

  

( )t a af J  =− +       (26) 

a i aiJ I= ,       (27) 

0ai a iI =   .      (28) 

 

2.3 Boundary conditions between DFH and CPD 

domains 

 

In highly heterogeneous porous material there can be 

situations when there are adjacent spatial regions where 

one can use alternatively DFH or CPD. It is necessary to 

discuss what boundary conditions should be set at the 

common boundary 
1 2D D=   between the DFH 

region  
1D  and the CPD region 

2D . Eq. (16) is still valid 

at   in 
1D  , while Eqs. (14) and (15) are not because 

there can be transport of components through the 

boundary. 

One evident boundary condition follows from 

conservation of component fluxes 

 
a a

ai ail I l I= .       (29) 

 

The next condition can be derived from energy 

conservation at the boundary  

   
a a

a al J l J= .    (30) 

 

Using Eqs. (18), (29), and (30) one can satisfy Eq. (27) by 

imposing boundary condition for chemical potentials 

 

i i im X = − ,   (31)

  

where variable X   is determined by the additional 

boundary equation  
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2.4 Examples of CPD models 

 

For the first example we assume that the porous medium 

is homogeneous and isotropic, and there is single-phase 

single-component flow. In this case the CPD transport law 

is equivalent to the Darcy law (see the last equation in (6)) 

  
1

1 1 1 1a a aI K K n p −=−  =−     (33)
 

 

with CPD transport coefficient K  being proportional to 

the absolute permeability k , 2 1

1 sK k n  −=  , where 

coefficient 
s  is the shear viscosity. 

Second, we consider two-phase two-component 

mixture modeling water and oil. Here we have the 

following definitions 

 

1 w wn s n= , 
2 (1 )w on s n= − ,     (34) 

w w w

w o o cap w

( ) ( )

(1 ) ( ) ( )

if f n s f n

s f n f s

= = +

− +
,    (35) 

w o cap w cap w( ) ' ( )p p p s f s− = = ,   (36) 

 

where 
ws  is the water saturation, 

w w,f p  are the 

Helmholtz energy density and pressure of water, 
o o,f p  

are the Helmholtz energy density and pressure of oil, and 

cap w cap w cap w( ) , ( ) ' ( )f s p s f s=  are the Helmholtz 

energy density and pressure for capillary forces. Eqs. 

(34)-(36) determine variables 
w w o, ,s n n  when 

variables 
1 2,n n  are known. The transport model in Eq. 

(24) is consistent with the generalized Darcy law if there 

are the following additional conditions:
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where 
w o,k k  are water and oil phase permeabilities. If 

conditions in Eq. (37) are not satisfied, CPD model can 

demonstrate some phenomena outside traditional Darcy 

transport. 

 

3 Numerical examples 
 

To demonstrate application of a workflow based on the 

joint DFH modeling within resolved porosity and CPD 

modeling within matrix containing unresolved smaller 

pores (DFH+CPD workflow) we chose a heterogeneous, 

but relatively well characterized chalk sample. The 

sample is grainstone composed of pelloids, skeletal grains 

and ooids. The grains are cemented by equant calcite spar 

cement. Intergranular porosity is the dominant pore 

system, additionally some moldic and micropores are 

present in partially leached grains. Pore throats are 

ranging between approximately 1 and 10 microns. Pore 

throat distribution is skewed to smaller pore throat sizes. 

Measured gas porosity of the sample is 26.2%, and gas 

permeability is 19.4 mD. 

 

 (a) 

 (b) 

 

 (c) 

Fig. 1. Micro-CT grayscale cross-section of the dry chalk (a) 8 mm mini plug at 2.46 um resolution, (b) a 2.46 mm x 2.46 mm 

fragment of a cross-section at 2.46 um resolution, and (c) a 0.82 mm x 0.82 mm fragment of a cross-section at 0.82 um resolution; 

the dashed line in (a) shows the position of the maximum size parallelepiped model extracted from the mini plug. 
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An 8 mm diameter mini plug was scanned with 2.46 

um per voxel resolution, and a portion of the mini plug 

was scanned with higher resolution of 0.82 m per voxel 

(Fig. 1). 

Two 3D digital rock models (DRM) with these two 

different resolutions were constructed (Fig. 2). Both 

models cover the same spatial region with the size 0.82 

mm x 0.82 mm x 0.82 mm, but they have different number 

of cells (voxels). The high-resolution DRM has 10003 

(1000x1000x1000) cells and the low-resolution DRM has 

3333 (333x333x333) cells so that the cell sizes are 0.82 

um and 2.46 um, respectively. In either model some 

portion of pores fell below resolution. However, it is 

evident from Fig. 2 that significantly higher proportion of 

pores remains below resolution in the low-resolution 

DRM than it does in the high-resolution DRM. The data 

on the resolved and unresolved porosity is shown in Table 

1. 

 

(a)  (b) 

Fig. 2. 3D view of the pore space of the (a) high-resolution 10003 and (b) low-resolution 3333 DRMs. The resolved pores are shown 

in green, the unresolved pores (subresolution matrix) are shown in red, and the skeleton is made transparent. 

 
Table 1. The portion of resolved porosity and unresolved 

porosity (subresolution matrix) within digital rock models of 

different spatial resolution. 

 

Model Resolved 

porosity 

Subresolution 

matrix 

10003, 0.82 um 0.166 0.073 

3333, 2.46 um 0.091 0.157 

 
In addition to X-ray micro-CT, we have done scanning 

electron microscopy (SEM) of parts of the sample to 

reveal the pores below micro-CT resolution down to 50 

nm. Using both micro-CT high-resolution (0.82 um) and 

SEM data we performed digital modeling of MICP 

experiment and reconstructed pore throat size distribution 

that is compared to the standard experimental MICP 

measurements in Fig. 3. The two curves in Fig. 3 match 

well meaning that most of the controlling pore throats 

have been adequately resolved on the corresponding 

scales. 

In modeling on the high-resolution DRM, we 

assumed that the subresolution matrix portion of the 

model is effectively impermeable for oil at relevant oil-

water capillary pressure levels so that only the DFH 

equations need to be solved within the resolved pore 

space. On the other hand, in modeling on the low-

resolution DRM, we assumed that the subresolution 

matrix is permeable and therefore the full DFH+CPD 

simulation needs to be done. To set up a single-phase 

DFH+CPD simulation it is necessary to provide absolute 

permeability in the subresolution matrix cells so that the 

single-phase CPD transport law given in Eq. (33) could be 

resolved. In order to do this, we first simulated single-

phase flow on the high-resolution DRM to obtain velocity 

distribution (Fig. 4a). 

 

 
Fig. 3. Reconstructed numerically from the micro-CT and SEM 

data (green curve) and obtained from the MICP measurements 

(blue curve) pore throat size distributions. 

 

Then, by interpreting the simulation results in terms of Eq. 

(33) and linking them with the gray scale distribution 

from the high-resolution images such as those shown in 

Fig. 1c, we established a correlation between the gray 

scale and absolute permeability values. We then applied 

the same correlation to the low-resolution gray scale 

images to inform the low-resolution DRM about the 

subresolution matrix permeability. The velocity 
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distribution obtained on this 3333 low-resolution DRM is 

presented in Fig. 4b. The absolute permeabilities 

calculated on the high- and low-resolution DRMs are 17.3 

mD and 18.2 mD, correspondingly. 

The next step was simulating two-phase flow and 

the steady-state relative permeability experiment. The two 

immiscible phases were assumed to be water and oil with 

the properties as follows: 3

w 1000kg/m = , 

3

o 800kg/m = , 
sw 0.001Pa×s = , 

so 0.004 Pa×s = , 

ow 0.03N/m = , where 
w o,   are the water and oil mass 

densities, 
sw so,   are the water and oil viscosities, and 

ow  is the oil-water interfacial tension. Since the sample 

is carbonate, it was assumed that it has mixed wettability. 

To model this, we first injected oil into initially water-wet 

100% water saturated high-resolution DRM using our 

standard DFH workflow [11, 14-17, 19-21]. (In all cases 

here and below injection was arranged in direction from 

bottom to top as shown in the 3D views.) Then at those 

places where oil touched the pore walls we switched 

wettability to moderately oil-wet while leaving the 

untouched pore walls water-wet. In this way most of the 

smaller pores as well as the pores isolated by thin pore 

throats remained water-wet, while the larger pores 

attained wettability towards oil. The distribution of water 

and oil at the residual water saturation state is shown in 

Fig. 5a. Using the obtained mixed-wet wettability 

distribution we simulated the steady-state relative 

permeability experiment by injecting oil and water 

mixture in several steps different in water content in the 

influx; at the final step, with only water injected, the 

residual oil saturation was obtained (Fig. 5c). 

  

 

(a)  (b) 

 
Fig. 4. 3D view of the velocity absolute value distribution in (a) the high-resolution 10003 DRM and (b) the low-resolution 3333 

DRM of the same location within the core. The shown distribution was scaled to the [0; 1] range. The velocity corresponds to flow in 

vertical (z) direction. 

 

(a)   (b) 



 

 

 

(c)  (d) 

Fig. 5. 3D view of the distribution of water and oil in the high-resolution DRM (left column) and the low-resolution DRM (right 

column) at the initial conditions corresponding to the residual water saturation (a, b), and the final state corresponding to the residual 

oil saturation (c, d). Water is shown in semitransparent blue, oil is shown in red, and skeleton is completely transparent. 

 

To run DHD+CPD two-phase simulation, it is 

necessary to provide CPD transport matrix of Eq. (24) in 

subresolution matrix cells. Alternatively, when dealing 

with immiscible phases like oil and water that are each 

described by just one pseudo-component, it is possible to 

use simplified CPD transport model provided in Eq. (37) 

and based on the concepts of absolute and relative 

permeabilities and capillary pressure. We already 

discussed how absolute permeability was assigned to the 

subresolution matrix cells of the low-resolution DRM. 

The relative permeability was assigned in a similar way 

since all the velocity distribution, pressure, and water 

saturation for the subresolution matrix cells are known 

from the simulation on the high-resolution model. The 

capillary pressure function was constructed using the 

Young-Laplace equation and then scaled to the pore size 

distribution correlated by the gray scale values. 

The distributions of oil and water obtained in 

simulation of the two-phase steady-state relative 

permeability experiment modeled using the DFH+CPD 

workflow on the low-resolution DRM are presented in 

Fig.5b,d. The chart in Fig. 6 compares the relative 

permeability curves obtained on both high- and low-

resolution DRMs. 

The final example we wish to present here is the 

simulation of both absolute and steady-state relative 

permeabilities on another low-resolution DRM with the 

size of 4.92 mm x 4.92 mm x 2.46 mm approximated with 

500 x 500 x 250 cells with the cell size of 9.84 um. This 

model covers maximum size parallelepiped that can be 

extracted from the micro-CT scans of the 8 mm mini plug 

as shown by the dashed line in Fig. 1a. All of the 

parameters necessary to set up the DFH+CPD model were 

taken from the previous calculations on the high-

resolution DRM as described previously. 

 

 
Fig. 6. Comparison of the simulated steady-state relative 

permeability curves obtained on the high-resolution (orange and 

blue curves) and low-resolution (yellow and gray curves) DRMs 

of the same spatial region within the sample. 

 

Simulated absolute permeability of this model is 

19.8 mD. The distributions of water and oil corresponding 

to the residual water saturation and residual oil saturation 

as obtained during the steady-state relative permeability 

simulation are shown in Fig. 7. The simulated relative 

permeability curves are presented in Fig. 8. 

In this work, the simulation results were interpreted 

in consistency with the conditions in Eq. (37) that is with 

the traditional Darcy transport. However, in complex fluid 

problems deviations from relative permeability concept 

are expected, which then must be treated in the frame of 

the wider CPD model. 
 



 

 

 

(a) (b) 

Fig. 7. 3D view of the distribution of water and oil in the upscaled low-resolution DRM at (a) initial conditions corresponding to the 

residual water saturation, and (b) final state corresponding to the residual oil saturation. Water is shown in semitransparent blue, oil is 

shown in red, and skeleton is transparent. 

 

 
Fig. 8. Simulated steady-state relative permeability curves 

obtained on the upscaled low-resolution model. 

2 Conclusion  

We developed a new digital rock workflow applicable for 

simulation of multiphase flow on multiscale models 

representing heterogeneous core samples. The workflow 

called DFH+CPD is based on solving the standard DFH 

equations within resolved porosity and solving the new 

CPD equations within unresolved porosity or 

subresolution matrix. The CPD equations are derived in 

mathematically rigorous way from the DFH equations 

averaged over statistically representative ensemble of 

pores. The new workflow amounts to an effective 

upscaling procedure allowing multiphase simulation on 

coarse resolution digital rock models that include 

information that can be obtained on high-resolution 

models. The DFH+CPD workflow was implemented 

within the Schlumberger DHD simulator. 

 To validate the new workflow, we compared absolute 

and steady-state relative permeabilities simulation results 

on the high-resolution model and the low-resolution 

model of the same region within the heterogeneous 

carbonate core. Then we demonstrated simulation of the 

steady-state relative permeabilities on the upscaled digital 

rock model that covers almost entire 8 mm mini plug. 

We thank Schlumberger for permission to publish this work. 
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