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Is contact angle a cause or an effect? – A cautionary tale 
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Abstract.  The most influential parameter on the behavior of two-component flow in porous media is 

“wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. 

When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid 

surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less 

than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid 

is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at 

least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to 

characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-

component systems. Using simple thought experiments and published experimental results, many of them decades 

old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other 

parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability 

behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle 

cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be 

demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a 

two-dimensional image to determine the contact angle can result in a wide range of measured values. This 

observation is consistent with some published experimental results.  It follows that contact angles measured in 

two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize 

the wettability of the system. 

 

1 Introduction 

This paper will discuss various considerations of the 

interface between a gas, a liquid, and a solid surface.  

The fundamental principle of a force balance between 

the gas and the liquid, if they are separated by a curved 

surface, is that the difference in pressure across that 

surface, ∆𝑃, is given by 

∆𝑃 = 𝜎𝑙𝑔  (
1

𝑅1

+
1

𝑅2

)  (1) 

Here 𝜎𝑙𝑔 is the interfacial tension between the gas and 

the liquid, and 𝑅1 and 𝑅2 are the two radii of curvature 

of the surface.  If a drop of fluid is placed on a flat, solid 

surface, a balance of forces requires that (Young’s 

equation) 

𝜎𝑙𝑔 cos 𝜃 = 𝜎𝑠𝑔 − 𝜎𝑠𝑙   (2) 

Here 𝜎𝑠𝑔 is the interfacial tension between the solid and 

the gas, 𝜎𝑠𝑙 is the interfacial tension between the solid 

and the liquid, and 𝜃  is the angle that the liquid-gas 

surface makes with the solid surface, termed the 

“contact angle”.  If the solid is a circular capillary tube, 

then the pressure difference across the surface is termed 

“capillary pressure”, 𝑃𝑐, and simple rules of geometry 

lead to the expression 

𝑃𝑐 =
4 𝜎𝑙𝑔 cos 𝜃

𝛿
   (3) 

Here 𝛿 is the diameter of the tube. These three equations 

are all that is required to demonstrate the characteristic 

behaviors of contact angles.   

 

Generally, Equation 2 is used to determine the 

wettability of a three component (liquid-gas-solid) 

system.  Specifically, if 𝜃 when measured through the 

liquid is found to be much less than 90˚, the system is 

said to be strongly “liquid wet”; a typical liquid wet 

system is water/ air/ glass.  If  𝜃 is near 90˚ the system 

is said to be “neutrally wet”.  If 𝜃 is much greater than 

90˚, the system is said to be “gas wet”; a typical gas wet 

system is mercury/ air/ glass.  For very simple cases, 

such as a drop of water on a horizontal solid surface, this 

definition of wettability is universally accepted.  

Unfortunately, this definition has become dogmatic and 

it has been extended to mean that the contact angle 

directly defines the wettability in all situations.  In 

particular, with the advent of high resolution imaging 

methods, apparent contact angles can be measured in-

situ in both static and dynamic situations.  In the present 

paper, published results and simple thought experiments 

are to demonstrate that contact angles are not always 

characteristic of wettability.  Furthermore, it is 

demonstrated that direct measurement of in situ contact 

angles is difficult without sophisticated interpretation 

methods. 

 

This paper is not a condemnation of the ability to 

determine contact angles on the microscopic scale – it is 

a cautionary statement that such determinations must be 

done with great care.  However, this paper does 

demonstrate that interpreting wettability from direct 

contact angle measurements is not always a meaningful 

activity. 

 

2 The Contact Angle and Wettability  

It is a tacit assumption that if a contact angle can be 

measured, then the wettability of a system can be 

determined.  However, there are many cases where this 

assumption is obviously wrong.  One of these cases is 

demonstrated in the classic monograph by Craig [1].  



 

 

His Fig. 2.3 clearly demonstrates that even in the case of 

a static contact angle measurement, it can take many 

hundreds of hours to obtain an equilibrium contact 

angle.  The illustration is for an oil/water/solid surface 

and it could be argued that such systems are susceptible 

to complex chemical factors.  However, even this simple 

case provides a cautionary note.  Modelling of 

displacement processes generally utilize capillary 

pressure data that is time-independent.  But if the contact 

angle is time dependent, then it follows from Equation 3 

that the capillary pressure must be time dependent.  

Therefore, all displacement processes are potentially 

time dependent, an issue rarely considered when 

analyzing such processes.  

 

A second case of interest is that of a drop on a 

surface, when the surface is gradually tilted from the 

horizontal.  This case has been studied since at least the 

late 1930s [2].   A more recent paper by Krasovitski and 

Marmur [3] provides a succinct description of this case.  

What they found is that the drop distorts but does not 

move until the plate is tilted to a critical angle, the “slip 

angle”.  Assuming, a gas/ water/ solid system, when the 

drop distorts, the contact angle at the up-tilt end of the 

drop, 𝜃𝑢, decreases and the contact angle at the down-

tilt end of the sample, 𝜃𝑑, increases.  Using the 

conventional interpretation, this would mean that simply 

tilting the surface causes the up-tilt end of the system to 

become more water-wet while the down-tilt end of the 

system moves toward neutral-wettability 

 

It is found both experimentally and theoretically 

that the slip angle, 𝛼, is related to the two contact angles 

by the relation  

sin 𝛼 = 𝐶 𝜎𝑙𝑔(cos 𝜃𝑢 − cos 𝜃𝑑)  (4) 

Here 𝐶is a constant that depends on the densities of the 

fluids, gravitational acceleration, and drop shape.  

Krasovitski and Marmur also document that once the 

drop begins to move, the values of 𝜃𝑢 and 𝜃𝑑 do not 

remain constant.  An argument can be made that these 

changes are due to the fact that the up-tilt contact line is 

receding over a surface which was in contact with water, 

while the down-tilt contact line is advancing over a 

surface that was in contact with gas, and that this 

difference accounts for the difference between 

“advancing contact angles” and “receding contact 

angles”.  However, at tilt angles less than the slip angle, 

this argument does not apply because the drop has not 

yet moved.  

 

Next, consider a water/ air/ solid system in a vertical 

capillary tube with one end immersed in a tray of liquid 

and the other open to air.  The well-known behavior is 

that water will rise in the tube until a force balance 

obtains between the hydrostatic and capillary forces.  

The pressure in the water at the water-surface in the tray 

must be equal to the pressure in the air at this point. 

Therefore, this force balance requires that  
4 𝜎𝑙𝑔 cos 𝜃

𝛿
= (𝜌𝑙 − 𝜌𝑔) 𝑔 ℎ   (5) 

Here  𝜌𝑙 − 𝜌𝑔 is the difference between the densities of 

water and air, 𝑔 is the acceleration of gravity, and ℎ is 

the height of the liquid/ air interface in the capillary tube 

relative to the height of the liquid/ gas interface in the 

tray.     

 

Now consider what would happen if the tube is 

gently removed from the tray and a second water/ air 

surface is created at the bottom of the tube.  The pressure 

below the bottom water/ air surface differs from the 

pressure above the top water/ air surface by 𝜌𝑔 𝑔 ℎ.  

Therefore, the hydrostatic pressure of the water in the 

tube just makes up for the capillary pressure at the upper 

surface and the pressure difference at the bottom 

water/air surface must remain at zero.  But this implies 

that the bottom surface is flat and that 𝜃 is 90˚.  Using 

our conventional definition of wettability means that the 

top surface is strongly water-wet and the bottom surface 

is neutrally-wet. 

 

Continuing this line of reasoning, various amounts 

of water can be forced from the tube to obtain force 

balances that would require 
4 𝜎𝑙𝑔

𝛿
(cos 𝜃𝑡𝑜𝑝 − cos 𝜃𝑏𝑜𝑡𝑡𝑜𝑚) = 

   (𝜌𝑙 − 𝜌𝑔) 𝑔 ℎ  
(5) 

Therefore, by implication, the contact angle at the 

bottom water/air surface would have values given by the 

equation 

𝜃𝑏𝑜𝑡𝑡𝑜𝑚 = 

     arcos (cos 𝜃𝑡𝑜𝑝 −
𝛿 (𝜌𝑙 − 𝜌𝑔) 𝑔 ℎ

4 𝜎𝑙𝑔

) 
(6) 

This equation implies that wettability at the bottom of 

the tube varies continuously with height of water. 

 

The above description is an approximation to what 

would actually happen experimentally.  The bottom of 

the tube includes a flat surface which complicates the 

situation.  Water can spread across this surface resulting 

is a convex-up surface that increases the pressure at the 

bottom surface, hence the pressure at the top surface.  

However, the conclusion remains the same – the contact 

angle at the top surface cannot be the same as the contact 

angle at the bottom surface or the tube will drain and 

experimentally it is found that the tube does not drain. 

  

A variation on the above reasoning can be made for 

a horizontal tube that is spun in a centrifuge.  The 

equation describing the capillary pressure in this system 

is   

𝑃𝑐𝑜 − 𝑃𝑐𝑖 = (𝜌𝑔 − 𝜌𝑙)
 𝜔2

2
(𝑟𝑜

2 − 𝑟𝑖
2) (7) 

Here 𝑟 is the radius of rotation, the subscript 𝑖 denotes 

the variables at the fluid interface closest to the center of 

rotation, 𝑜 denotes the variables at the interface farthest 

from the center of rotation, and 𝜔 is the angular velocity.  

At zero angular velocity, the pressures in the water at the 

two ends of the tube are the same.  As the angular 

velocity is increased, the equilibrium condition requires 

that the capillary pressures at the two ends of the tube 



 

 

must differ.  Using Equation 3, this difference can be 

expressed in terms of contact angles:  
4 𝜎𝑙𝑔

𝛿
(cos 𝜃𝑜 − cos 𝜃𝑖) = 

       (𝜌𝑔 − 𝜌𝑙)
 𝜔2

2
(𝑟𝑜

2 − 𝑟𝑖
2) 

(8) 

We can conclude from this that the contact angle for the 

interface farthest from the center of rotation varies with 

angular velocity; hence, following conventional 

reasoning, the wettability at this point, is a function of 

angular velocity which is not true. 

 

There are also many reports in the literature of how 

the contact angle at the interface of two fluids in a tube 

differ with the velocity of the interface.  It is well known 

that the problem of a moving contact angle cannot be 

solved analytically because a singularity arises in the 

equations at the contact point of the two fluids and the 

solid surface.  This singularity is generally treated by 

assuming that there is “slip” at the contact line.  Based 

on this model, the classic paper by Cox [4] showed that 

the apparent contact angle was related to the static 

contact angle as a function of the capillary number.  This 

behavior was verified experimentally in such works as 

Fermigier and Jenffer [5].  It is found that, above a 

capillary number of approximately 10−3, the apparent 

contact angle can vary significantly, going from static 

values of 30° to values approaching 180°.  In terms of 

wettability, these contact angles imply a variation from 

strongly water wet to strongly oil wet.  Therefore, for 

dynamic displacements in capillary tubes, the contact 

angle cannot be used to characterize the wettability.  If 

this is true for flow in capillary tubes, it must also be true 

for flow in porous media.       

 

3 In-Situ Measurements of Contact Angles 
There has been a recent interest in measuring contact 

angles in-situ by means of micro-imaging techniques 

(e.g. Andrew et al  [5], Held et al  [6]).  However, 

 

 
Fig. 1a  Nomenclature for an interface in a vertical tube 

(elevation view). 

 

of porosity by means of two-dimensional images, in-situ 

measurements of contact angles are problematic.  

similar to the measurement. This will be illustrated by 

using the case of an interface in a vertical capillary tube. 

 

Fig. 1 shows the nomenclature for an interface in a 

vertical tube.  The interface is assumed to have a 

spherical shape with a radius of curvature, 𝑅. Two 

coordinate systems will be used: a Cartesian system with 

coordinates 𝑥, 𝑦, 𝑧 and a spherical coordinate system 

with coordinates 𝑟, 𝛼, 𝛽.  The origin of both coordinate 

systems is the center of curvature of the surface.  Here, 

𝑧 is assumed positive downward.  

 

 
Fig. 1b  Nomenclature for an interface in a vertical tube 

(plan view). 

 

The equations of the surface in the Cartesian 

coordinate system in terms of the spherical system are 

𝑥𝑠 = 𝑅 sin 𝛽 cos 𝛼   (9a) 

 

𝑦𝑠 = 𝑅 sin 𝛽 sin 𝛼 (9b) 

 

𝑧𝑠 = 𝑅 cos 𝛽 (9c) 

 

The equations for the wall in Cartesian coordinates in 

terms of the spherical system are 

𝑥𝑤 = 𝑅 sin 𝜃 cos 𝛼   (10a) 

 

𝑦𝑤 = 𝑅 sin 𝜃 sin 𝛼 (10b) 

 

𝑧𝑤 = 𝑧 (10c) 

 

It is next assumed that the interface is cut by a plane, 

as shown in Fig. 2, such that the cross-section of the 

interface can be examined in a two-dimensions plane, 

𝑢 − 𝑤.  (This plane is meant to represent the observation 

plane in a two-dimensional imaging experiment.)  The 

equations for this plane in terms of the Cartesian 

coordinate system are 

𝑥𝑝 = 𝑢   (11a) 

 

𝑦𝑝 = 𝑦𝑒 − 𝑤 cos 𝛾 (11b) 

 

𝑧𝑝 = 𝑧𝑒 + 𝑤 sin 𝛾 (11c) 
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The equations for the surface in the two-

dimensional plane in terms of the spherical system can 

be found by combining Equations 9 and 11.  The result 

is 

𝑢 = 𝑅 sin 𝛽 cos 𝛼   (12a) 

 

𝑤 =
𝑅 cos 𝛽 − 𝑧𝑒

sin 𝛾
 (12b) 

 

𝑤 =
𝑦𝑒 − 𝑅 sin 𝛽 sin 𝛼

cos 𝛾
 (12c) 

 

The two equations for 𝑤 require that 

(cos 𝛽 − 𝑧′
𝑒) cos 𝛾 = 

        (𝑦′𝑒 − sin 𝛽 sin 𝛼) sin 𝛾   
(13) 

where 𝑦′𝑒 is 𝑦𝑒 𝑅⁄  and 𝑧′𝑒  is 𝑧𝑒 𝑅⁄ . 

 

 
Fig. 2  A two dimensional plane that intersects the 

surface and the wall. 

 

The two-dimensional surface can be characterized 

by the point where the plane crosses the 𝑧- axis, 𝑧𝑜, and 

the angle the plane makes with the horizontal, 𝛾.  This 

will allow the calculation of the coordinates where the 

plane crosses the surface in the cross-section shown in 

Fig. 2.  Provided that the plane intersects the plane of 

contact, the minimum 𝛽-value, denoted by 𝛽1, will 

always be 𝜋 2⁄ − 𝜃 (the point where the surface contacts 

the wall).  For this condition,  

𝑤 =
𝑅 sin 𝜃 − 𝑧𝑒

sin 𝛾
=

𝑦𝑒 − 𝑅 cos 𝜃

cos 𝛾
   

               tan 𝛾 >
𝑧𝑜

𝑟𝑜

   
(14) 

If the intersecting plane does not intersect the plane of 

contact, then the 𝛽-value can be found using Equation 

13 and setting the 𝛼-values to 𝜋 2⁄ ; this 𝛽1-value is 

given by 

sin 𝛽1 = (𝑧′
𝑒 cos 𝛾 + 𝑦′

𝑒
sin 𝛾) sin 𝛾 − 

   cos 𝛾  √(1 − (𝑧′
𝑒 cos 𝛾 + 𝑦′

𝑒
sin 𝛾)

2
)  

(15) 

 

The second point where the plane intersects the surface, 

𝛽2, is also given by Equation 13. Again setting the 𝛼-

values to 𝜋 2⁄ , this time the solution is  

sin 𝛽2 = (𝑧′
𝑒 cos 𝛾 + 𝑦′

𝑒
sin 𝛾) sin 𝛾 + 

   cos 𝛾  √(1 − (𝑧′
𝑒 cos 𝛾 + 𝑦′

𝑒
sin 𝛾)

2
)  

(16) 

Furthermore, Equation 13 can be used to generate 𝛼-

values that correspond to 𝛽-values  

𝛼 = 

   sin−1 (
𝑦′𝑒 sin 𝛾 + 𝑧′

𝑒 cos 𝛾 − cos 𝛽 cos 𝛾

sin 𝛽 sin 𝛾
)  

(17) 

The shape of the surface in the intersecting plane can 

therefore be calculated for various 𝛽-value between the 

minimum and the maximum. 

 

For the wall, the coordinates in the intersecting 

plane become 

𝑢 = 𝑅 cos 𝜃 cos 𝛼   (18a) 

 

𝑤 =
𝑦𝑒 − 𝑅 cos 𝜃 sin 𝛼

cos 𝛾
   (18b) 

The shape of the wall in the intersecting plane can 

therefore be calculated for any 𝛼–value.  For the wall, 

𝛼–values range from 0 to 2𝜋. 

 

A special case is when the intersecting plane is 

vertical.  Then the equation for the plane is  

𝑥 = 𝑅 cos 𝛽 cos 𝛼   (19a) 

 

𝑦 = 𝑦𝑜   (19b) 

 

𝑧 = 𝑧𝑝   (19c) 

the intersection of the surface in the plane is  

𝑅 cos 𝛽 sin 𝛼 = 𝑦𝑜   (20a) 

 

𝑦𝑝 =  𝑅 sin 𝛽   (20b) 

the maximum 𝛽-value is  

𝛽 = cos−1 (
𝑦𝑜

𝑅
)   (21) 

and the 𝛼–values are given by 

𝛼 = sin−1 (
𝑦𝑜

𝑅 cos 𝛽
)   (22) 

 

The apparent contact angle can be found from  

(
𝑑𝑤

𝑑𝑢
)

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
− (

𝑑𝑤

𝑑𝑢
)

𝑤𝑎𝑙𝑙
= tan 𝜃𝑎 (23) 

evaluated at the wall.  This is a complex derivative best 

done numerically. 

 

4 Typical Interface Shapes 
Fig. 3 through 9 show typical interface shapes for planes 

that intersect the interface at various positions.  These 

figures were calculated assuming that 𝜃 = 30°.  In each 

figure, the left panel shows a schematic of the 

intersection and the right panel shows what would be 

observed in the intersecting plane, that is, the plane of 

observation in an imaging experiment.  

 

Fig. 3 shows the case where the plane intersects the 

interface horizonally.  The conclusion that could be 

𝑦 

𝑧 

𝛾 

𝑤 

𝑦𝑒 , 𝑧𝑒 

𝑧𝑜 



 

 

drawn from the image is that gas is flowing as an 

encapsulated phase and that the water is perfectly 

wetting with an apparent contact angle of 𝜃𝑎 = 0.  In 

this case, the intersection of the plane with the wall is 

circular. 

 

Fig. 4 shows the case where the plane intersects the 

interface before it intersects the wall.  The conclusion 

that could be drawn from the image is that gas is flowing 

as an encapsulated phase, that the water is perfectly 

wetting with an apparent contact angle of 𝜃𝑎 = 0, and 

perhaps water is trapped in a pore space located at the 

bottom of the image.  In this case, the intersections of 

the plane with the wall is elliptical and the plane with 

the interface is circular. 

 

Fig. 5 shows the case where the plane intersects the 

surface at the point where the interface contacts the wall.  

In this case, 𝛾 ≅ 20° and the apparent contact angle that 

would be measured in the image is 𝜃𝑎 = 0.  In this case, 

the intersections of the plane with the wall is elliptical 

and the plane with the interface is circular. 

 

Fig. 6 shows the case where the plane intersects the 

surface at the point such that = 45° ; the apparent 

contact angle that would be measured in the image is 

𝜃𝑎 = 24.5°.  In this case, the intersection of the plane 

with the wall is elliptical. 

 

Fig. 7 shows the limiting case where the plane is 

vertical,𝛾 = 90°; the apparent contact angle that would 

be measured is the true contact angle 𝜃𝑎 = 30°.  In this 

case, the intersection of the plane with the wall is 

elliptical; however, the ellipse is infinitely extended 

such that the wall appears as two vertical lines. 

 

Fig. 8 shows the case where the plane is vertical, 

𝛾 = 90°, but is offset from the z-axis half the distance to 

the wall. In this case the apparent contact angle that 

would be measured is 𝜃𝑎 = 33.7°.  The wall still appears 

as two vertical lines; however, the spacing between the 

lines is less than for the previous case.  This could be 

interpreted to mean that the image is for a capillary tube 

with a smaller diameter than in the previous case. 

 

Fig. 9 shows the case where the plane is vertical, 

𝛾 = 90°, but is offset from the z-axis by 95% of the 

distance to the wall. In this case the apparent contact 

angle that would be measured is 𝜃𝑎 = 61.6°.  The wall 

still appears as two vertical lines; however, the spacing 

between the lines is much less than for the previous case.  

This could be interpreted to mean that the image is for a 

capillary tube with a much smaller diameter than in the 

previous case. 

 

The implications of the last two cases is obvious.  

Simply examining the images to obtain apparent contact 

angles, it could be concluded that the contact angles for 

smaller sized capillary tubes increase and approach 

𝜃𝑎 = 90° in the limit.  This would suggest that smaller 

capillary tubes are neutrally wet while larger tubes are 

water wet.  This conclusion is, of course, specious. 

 

In summary, using intersecting planes for various 

positions, it is possible to measure apparent contact 

angles anywhere in the range 0° ≤ 𝜃𝑎 ≤ 90°.  This 

conclusion is completely supported by the work of 

Andrew et al [6].  They used what they called a 

“resampling plane” that could be reoriented relative to 

the grain surface.  They found that the measured angle 

could vary from approximately 10° to 110° (their Fig. 

10) by repositioning the resampling plane. 

 

The above analysis considers the very simple example 

of a straight, circular capillary tube.  Real porous media 

have flow passages that diverge, converge, twist and 

turn.  An analysis of such passages is beyond the scope 

of the present paper.  However, it is obvious that the 

measurement of true contact angles in such passages 

would be much more complex than that for the simple 

model considered here. 

 

5 A Way Forward 
It should be no surprise that the contact angle must be 

an effect, not a cause.  Examining Young’s equation, 

there are four parameters 𝜎𝑙𝑔 , 𝜃 , 𝜎𝑠𝑔, and 𝜎𝑠𝑙.  Basic 

principles of functions requires that only three of these 

variables can be independent.  The interfacial tensions 

are assumed to be properties of the substances, related 

to how various species of molecules interact across a 

surface.  They can therefore be assumed to be the 

independent variables.  This implies that the contact 

angle is the dependent variable and 

𝜃 = 𝑓 (𝜎𝑙𝑔, 𝜎𝑠𝑔, 𝜎𝑠𝑙)  (24) 

 

Furthermore, Young’s equation depends on a static 

force balance and other force terms must affect that 

balance if they are present.  It is unreasonable to expect 

the values of the interfacial tensions to change with the 

additional forces; hence, the contact angle must change.  

In fact, many theoretical studies utilize a modified 

Young’s equation that includes body forces and fluid 

stresses. 

 

I emphasize that this paper is not a condemnation of 

the ability to determine contact angles on the 

microscopic scale – it is a cautionary statement that such 

determinations must be done with great care.  The work 

of Andrew et al [6] shows how the measured contact 

angle varies depending on how the plane of 

investigation is oriented.  Their work could be taken 

one-step further.  Using multiple images, a three-

dimensional interface model could be reconstructed and 

this model could then be interpreted to determine a 

unique contact angle that characterizes the system, 

assuming that such an angle exists.  Based on 

observations made in the Andrew et al work, such a 

process would require much more detailed images than 

they acquired.  They found that there was insufficient 

accuracy in the digital data to determine contact angles 

computationally and they resorted to a manual process.  



 

 

This would be impractical if reconstructions of 

interfacial surfaces are performed, particularly in a 

dynamic experiment.  It would appear that one more 

level of sophistication in image analysis must be 

achieved before contact angles can be systematically 

interpreted from micro-imaging experiments.  There is 

evidence that this type of work is being pursued 

(AlRatrout et al [8]). 

 

6 Conclusions 
The present work supports the following conclusions: 

1. Contact angles are dependent variables, functions 

of fluid/ solid properties (interfacial tensions), 

displacement velocities, history (time, hysteresis, 

and externally applied body forces and viscous 

stresses) – they are effects not causes. 

2. Wettability can be defined dependably by the 

contact angle only for the static case with no 

externally imposed forces.  Contact angles 

measured in dynamic and complex systems may not 

be good indictors of wettability. 

3. It is not possible to measure accurately a contact 

angle in a simple two-dimensional image.  Such 

measurements would require detailed 

reconstruction and interpretation of the three-

dimensional interface. 
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Fig. 3  The shape of the interface in a horizontal plane that cuts the interface.  The water lies below the blue line and the 

air above. 

 

Fig. 4  The shape of the interface in a plane that crosses the interface before it crosses the wall.  The water lies below the 

blue line and the air above. 

 

Fig. 5  The shape of the interface in a plane that intersects the interface at the wall.  The water lies below the blue line 

and the air above. 

Fig. 6  The shape of the interface in a plane for 𝛾 = 45° .  The water lies below the blue line and the air above. 
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Fig. 7  The shape of the interface in a vertical plane.  The water lies below the blue line and the air above. 

 

Fig. 8  The shape of the interface in a vertical plane offset from the z-axis half the distance to the wall.  The water lies 

below the blue line and the air above. 

 

Fig. 9  The shape of the interface in a vertical plane offset from the z-axis is 95% of the distance to the wall. The water 

lies below the blue line and the air above. 
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