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Abstract. Wettability is an important parameter for assessing the performance and optimum recovery 

scenario for hydrocarbon reservoirs. Relative permeability and capillary pressure-saturation functions show 

a high sensitivity to wettability. At the core-scale, wettability is defined via the capillary pressure drainage 

and imbibition cycle, e.g. as Amott-Harvey or USBM indices. At the microscale, the concept of contact angle 

is used, which until recently was not experimentally possible to determine in a porous rock at reservoir 

conditions. In this work, the Gauss-Bonnet theorem is used to provide a link between Pc(Sw) and measured 

distributions of microscale contact angles. We propose that the wettability of a porous system can be described 

by geometrical constraints that define the state of immiscible fluids. The constraint describes the range of 

possible contact angles and interfacial curvatures that can exist for a given system. We present measurements 

on a sandstone rock for which the USBM index, Pc(Sw), and pore-scale contact angles are measured. The 

results show that pore-scale contact angle measurements can be predicted from capillary pressure data within 

4-8% error. This provides a general framework on how petrophysical data can be used to describe the 

geometrical state of fluids in a porous media. 

1. Introduction  

In a multiphase system, wettability refers to the relative 

preference between two fluids to coat the solid materials 

as a consequence of the associated surface energies. This 

physical consequence is important for special core 

analysis because it influences relative permeability, end-

point saturations, capillary pressure, capillary-end effect 

and other advanced multiphase flow processes, such as 

counter-current imbibition [1,2,3,4]. While various 

laboratory methods can be employed to define the wetting 

state of a rock there lacks a fundamental framework to 

incorporate wettability into Darcy scale models. 

Phenomenological approaches can be applied, such as 

correlations between Corey exponents and wettability. 

Common laboratory methods that define wettability are 

USBM or Amott wettability indices or sessile drop 

experiments [5]. More recent advances have also allowed 

for contact angle measurements in a porous rock with 

fluids at reservoir conditions [6,7]. These measurements 

bring about an exciting new tool to study the wettability 

of reservoir rocks. They also raise various fundamental 

questions regarding the physical meaning and uniqueness 

of these measurements.  

Of particular interest is the link between microscale 

contact angle and macro-scale wettability indices. 

Microscale measurements provide the wetting angle 

formed between a fluid and solid defined by Young’s 

equation,  

𝜎𝐹1 𝑆⁄ = 𝜎𝐹2 𝑆⁄ + 𝜎𝐹1 𝐹2⁄ cos 𝜃  (1) 

where 𝜃 is the angle formed along the common line in the 

orthogonal plane when the fluid/solid (𝜎𝐹1 𝑆⁄ , 𝜎𝐹2 𝑆⁄ ) and 

fluid/fluid (𝜎𝐹1 𝐹2⁄ ) interfacial tensions are in balance at 

equilibrium. This measurement is not necessarily 

practical for macroscale quantification of wettability.  

The measurement of 𝜃  in porous rock requires 

experiments at reservoir conditions and X-ray computed 

microtomography imaging followed by a sequence of 

image processing steps that introduce user-biases and 

have their own inherent difficulties with precision and 

accuracy. The measurement is only along the 3-phase 

common line on the rock surface. The variation of surface 

roughness and chemical heterogeneity on the rock surface 

that leads to a wide variation of surface energies is not 

necessarily quantified adequately.  The location of the 

common line and observed 𝜃 is dependent on the system 

parameters. A high versus low capillary number 

experiment would push the common line into different 

regions of the pore space. Drainage versus imbibition 

experiments would produce various distributions of 

advancing and receding contact angles. Contact angle 

hysteresis, interface pinning, and the time allotted for the 



 

system to reach equilibrium prior to imaging would also 

influence the observed pore-scale contact angles. Overall, 

these microscale measurements are an outcome of the 

dynamical system. 

Macroscale indices provide an alternative bulk 

measurement for porous systems. Methods such as the 

USBM are based on the drainage and imbibition Pc(Sw) 

curves. The USBM provides a single measurement of 

wettability, which is essentially the ratio of positive to 

negative work required for saturation. Alternatively, the 

Leverret J-function can be used to rescale Pc(Sw) data to 

match the curve for another rock by adjusting the assigned 

contact angle given that all other terms are known. This 

approach would provide a single “average” contact angle 

for the rock. What these macroscale indices mean in terms 

of microscale fluid arrangements is unclear.  

There currently exists no fundamental link between 

microscale contact angles and macro-scale wettability 

indices. Herein, we provide the link by using a theorem 

from integral geometry that explains the geometrical state 

of oil clusters in a porous rock in terms of curvature and 

contact angle. We utilize Pc(Sw) data to infer the 

geometrical state of fluid clusters in a sandstone rock to 

predict the distribution of pore-scale contact angles. This 

will require an advance review of integral geometry and 

theorems not commonly applied to porous systems. 

1.1 Gauss-Bonnet Theorem 
The Gauss-Bonnet Theorem [8] can be used to relate the 

total curvature of an oil cluster (C) to its topology (𝜒),  

2𝜋𝜒(𝛿𝐶) =  ∫ 𝜅𝑇𝑑𝐴 +  ∫ 𝜅𝑔 𝑑𝐿  (2) 

where 𝛿𝐶 is the bounding surface of the cluster, dA is an 

area element on the cluster surface, 𝜅𝑇 = 1
𝑟1𝑟2

⁄  is the 

Gaussian curvature along the surface, 𝑟1  and 𝑟2  are the 

two principal radii of curvature at any given location on 

the surface, 𝑑𝐿 is a line element (common line) along the 

boundary formed by the cluster and solid, and 𝜅𝑔 is the 

geodesic curvature along 𝑑𝐿 . This is an exceptional 

statement regarding differential surfaces that relates 

geometry (curvature) to topology (connectivity). The 

topological term used is the Euler characteristics (𝜒 ), 

which can be decomposed into the number of objects, 

loops and holes that a given cluster or set of clusters have, 

  
𝜒(𝐶) = 𝑂𝑏𝑗𝑒𝑐𝑡𝑠 − 𝐿𝑜𝑜𝑝𝑠 + 𝐻𝑜𝑙𝑒𝑠.                             (3) 
 
Take for example the bounding surface of a sessile drop, 

which is a single object with no loops and one hole, 

resulting in 𝜒(𝛿𝐶) =2. There is one hole because we are 

considering only the bounding surface (manifold) of the 

droplet not the drop as a solid object. The Euler 

characteristic for the solid droplet would be 𝜒(𝐶) =1 (no 

holes or loops). The Gauss-Bonnet theorem provides an 

important link between local geometrical properties and 

global topological properties, which explains the 

geometrical state of a bounding surface. Further details on 

the Gauss-Bonnet theorem and other important aspects of 

integral geometry applied to porous systems are provided 

in a recent review paper [8].  

 
The simplest way to understand the implications of Eq. 

(2) and its utility for porous systems is to study a sessile 

drop. We can use piecewise integration for this purpose. 

The bounding surface, A, can be partitioned into 

fluid/fluid and fluid/solid interfaces. There is also a 

common line separating the two bounding surfaces. 

Average curvature of the fluid/fluid interface can be 

defined as 𝜅𝐹1/𝐹2 and likewise for the fluid/solid interface 

𝜅𝑠 . The geodesic curvature along the common line is 

defined from two reference planes, i.e. the fluid/fluid 

interface (𝜅𝑔𝐹1/𝐹2
)and fluid/solid interface (𝜅𝑔𝐹1/𝑆 

). The 

latter is the contact angle that is measured during a sessile 

drop experiment. The former is the angle over which the 

common line deviates from being straight. 
 
From the previous definitions, we arrive at the following 

formula, 

2𝜋𝜒(𝛿𝐶) =  𝐴𝐹1/𝑠𝜅𝑠 +  𝐴𝐹1/𝐹2𝜅𝐹1/𝐹2 + 𝜅𝑔𝐿  (4) 

where 𝐴𝐹1/𝑠 is the area between fluid 1 and solid, 𝐴𝐹1/𝐹2 

is the fluid/fluid area and 𝐿 is the length of the common 

line. The geodesic curvature (𝜅𝑔) of the common line can 

be partitioned into its curvature components 𝜅𝑔𝐹1/𝑆
and 

𝜅𝑔𝐹1/𝐹2
. Here we assume that 𝜅𝑔𝐹1/𝑆

≫ 𝜅𝑔𝐹1/𝐹2
. The 

implications of this assumption will be discussed in the 

results section. The Euler characteristic for the bounding 

surface of a single droplet is two, 

𝜅𝑔𝐹1/𝑆 
= [4𝜋 − 𝐴𝐹1/𝑠𝜅𝑠 + 𝐴𝐹1/𝐹2𝜅𝐹1/𝐹2 ]/𝐿 .              (5) 

Eq. 5 explains how contact angle (𝜅𝑔𝐹1𝑆
) could change for 

any homeomorphic deformation of an oil cluster. This is 

a geometrical constraint. There are no requirements for 

equilibrium and thus, the result is independent of any 

force being applied to the droplet and is purely 

geometrical. 
 
Homeomorphic deformation means that no topological 

change occurs. Oil droplets that have undergone various 

homoeomorphic deformations are displayed in Fig. 1. By 

inspection it is evident that all of the bounding surfaces 

are single objects with no loops and one hole. Euler 

characteristic is the same for all cases despite each having 

a distinctly different geometrical shape. The implication 

is that total curvature must be conserved for these 

droplets, see Eq. 2. For the 2D droplet, the total curvature 

in the fluid/fluid interface is 2 with zero geodesic 

curvature. For the 2D sessile droplet, the total curvature 

in the fluid/fluid interface is 2(−x) where x is the 

fraction of the droplet area that is hypothetically extended 

into the solid substrate. The remaining curvature is in the 

common points represented by   since the fluid/solid 

interface is flat with zero curvature A similar situation 

occurs for the droplet in a capillary tube. For the dynamic 

droplet on a decline, the total curvature in the fluid/fluid 

interface is not trivial and the fluid/solid curvature is zero. 



 

However, the same geometric constraint must apply 

meaning that any curvature that is not in the fluid/fluid 

and fluid/solid interfaces must be in the common points 

representing the advancing and receding contact angles. 

 

 
Fig. 1. An oil droplet with radius R (top left) The droplet is 

placed in a solid surface such that the radius of curvature 

remains 1/R with contact angle  (top right). The droplet is 

placed in a capillary tube such that contact angle remains  with 

radius of curvature cos()/r (bottom left). A droplet moves along 

a decline with advancing angle A and receding angle R 

(bottom right).  

An additional example can be provided by considering an 

oil droplet captured in a microfluidic device, as shown in 

Fig. 2. Here the oil cluster has the same Euler 

characteristic as the previous examples in Fig. 1. The 

multi-colored curves represent the interfaces. The 

fluid/fluid interfaces curve outward with positive 

curvature while the fluid/solid interfaces curve inward 

with negative curvature. From the segmented image, we 

cannot resolve the contact of oil with the solid surface. 

However, regardless of a wetting film existing along the 

grain surfaces or direct contact of the grains with the solid, 

the oil always curves away from the solid surface creating 

negative curvature in regions adjacent to grains. 

Experimental evidence of this can be found elsewhere 

[14,15,16,17]. To determine contact we evaluate ∫ 𝜅𝑇𝑑𝐴 

over the multicoloured curves and then subtract the value 

from 4𝜋. The result, Re, is equal to ∫ 𝜅𝑔 𝑑𝐿. For the 2D 

image provided in Fig. 2, dL represents the 20 common 

points marked by the red stars. The average contact angle 

(or geodesic curvature) for all common points would be 

determined by Re/20.  
 

 
Fig. 2. An oil cluster trapped in a microfluidic device. The 

topology of the cluster is the same as the sessile drops displayed 

in Fig. 1.  

2. Materials and Methods  

We developed a workflow to generate multi-mineral 

models that can be assigned spatially heterogeneous 

wetting conditions. These models are used for multiphase 

flow simulations using the lattice Boltzmann method. A 

sandstone rock is first imaged with micro-CT followed by 

impregnation of epoxy and thin sectioning. The thin 

section is then imaged with Quantitative Evaluation of 

Minerals by Scanning Electron microscopy, known as 

QEMSCAN [9]. The analysis provides a high-resolution 

image of the rock with spatially defined mineral content 

in 2D. These data are then spatially registered to the 3D 

micro-CT data [10]. Grey-scale micro-CT values are 

correlated to mineral content to identify “seed points”. 

Then sequential sequences of converging active contours 

are applied by using the seed points as initial positions 

that advance based on the local image gradient [11]. The 

final outcome is a segmented 3D image of defined 

mineralogical information that can be used to assign 

spatially varying wetting [12]. The workflow is presented 

in Fig. 3.  

 



 

 
Fig. 3. An example of the image processing workflow for 

generation of the multi-mineral model. Micro-CT image (a), 

QEMSCAN image (b) and segmented data (c).  

We used the 2-phase flow lattice Boltzmann method to 

simulate drainage and imbibition for various wetting 

states [12]. Details on the LBM and validation studies are 

presented elsewhere [13,14,15,16]. We tested two wetting 

states – one with an overall wettability of 0.1 (neutral wet) 

and the other with an overall wettability of 0.75 (strongly 

water wet). Overall wettability, W, is defined as the 

summation of the cosine of the contact angles assigned to 

the mineral surfaces, 
 
𝑊 = ∑

𝛾𝑖𝐹1−𝛾𝑖𝐹2

𝛾𝐹1𝐹2

𝑛
𝑖=1 ϕi                                             (6) 

 
where 𝛾  is interfacial tension with subscripts for each 

fluid (F) or mineral (i) pair and 𝜙𝑖  is the solid voxel 

fraction.  

 
For each W there were four cases: 
1) Homogeneous - constant wettability everywhere. 

2) Corner wet - corners were water wet, remainder of 

grain surfaces were oil wet with a constant value. 

3) Mineral heterogeneity - heterogeneous wetting based 

on the mineral type. 

4) Corner wet with mineral heterogeneity - 

heterogeneous wetting based on the mineral type, but 

with water wet conditions applied in the corners. 

 
These cases were designed to mimic commonly assumed 

conditions for digital rock simulations and/or restored 

state cores that are aged in crude oil [3,5]. All simulations 

were initiated from a morphological-based (maximum 

inscribed spheres) drainage state of Sw~0.2.  Water 

flooding was simulated until the production curves starts 

to level off.  Once the curves level off at ~1M timesteps, 

a second set of simulations for secondary drainage were 

conducted starting from the end-point of the water flood. 

This provided the hysteretic drainage and imbibition 

curves required to calculate the USBM index [3]. The 

phase distributions were then used to measure contact 

angles and the curvature of interfaces. For direct contact 

angle measurements, we used the method explained by 

[6,7]. This is an apparent contact angle for the visualized 

fluid clusters. For curvature measurements, we used the 

approach explained by [17]. 

 3. Results and Discussion  

Contact angle distributions for the simulations near 

residual oil saturation are presented in Figs. 4 and 5. The 

corner-wet cases resulted in lower contact angles, which 

could be characterized as a more water-wet state than the 

homogeneous and heterogeneous cases. Interestingly the 

heterogeneous and homogeneous wet cases resulted in 

similar contact angles distributions and also provided 

similar Pc(Sw) curves (data not shown). The largest 

influence on the pore-scale contact angles appeared to be 

dictated by the corners and cervices of the rock remaining 

water wet. This suggests that connate water saturation 

plays a significant role in the overall observed wettability. 

 

Fig. 4. Contact angle distributions for the model systems where 

the total summation of the cosine of the contact angles for the 

mineral surfaces are 0.1 (see Eq. 6).  

 

Fig. 5. Contact angle distributions for model systems where the 

total summation of the cosine of the contact angles for the 

mineral surfaces are 0.7 (see Eq. 6).  

 



 

For the homogeneous case there was not a unique contact 

angle with a standard deviation of zero. Indeed, for the 

homogeneous case, the cosine of the contact angles 

assigned to each voxel was constant suggesting that the 

measured contact angle should be constant. A single 

contact angle was not observed for various reasons. 

Firstly, the surfaces of the grains are not uniformly 

smooth, and the direct contact angle measurement does 

not necessarily account for voxel-by-voxel roughness. 

The method measures the local angle of the fluid interface 

and grain surface near the common line by taking a 

regional approximation [6,7]. The reported values are 

apparent angles. Secondly, contact angle hysteresis must 

be considered. During flow there are complex sequences 

of cooperative dynamics where interfaces are advancing 

and receding providing a range of various contact angles. 

Lastly, the measured data was not collected at equilibrium 

conditions. The data analyzed was collected at residual oil 

saturation under flowing conditions.  

The measured contact angle distributions represent 

advancing and receding contact angles in addition to local 

regions were interface could be pinned, such as the 

entrance to a pore body. Distributions, such as these have 

been reported for experimental data in carbonate rocks 

where the surface chemistry is considered to be 

homogeneous [6]. If or how long it takes an interface to 

return to its equilibrium condition along the common line 

after an advancing or receding displacement is an open 

question. One advantage of using the Gauss-Bonnet 

theorem to predict the distribution of possible microscale 

contact angles, as explained later on, is that the 

methodology is purely geometrical. One also has to keep 

in mind that using geometric measures probes contact 

angles within the contact angle hysteresis loop, and not 

simply the intrinsic contact angle. The outcome therefore 

provides all of the possible geometrical states for fluid 

clusters regardless of the underlying dynamics. This 

applies in particular to techniques assessing contact 

angles from microscale fluid distributions which are a 

consequence of flow that are in most cases a superposition 

of processes with advancing and receding contact lines 

and various other dynamic effects. 

 

The Pc(Sw) data for the W=0.1 homogeneous and W=0.7 

corner-wet cases are provided in Fig. 6. The simulations 

were initiated from a morphological-based (maximum 

inscribed spheres) drainage state of Sw~0.2. Only the 

primary imbibition and secondary drainage processes 

were simulated. The simulation data were also fitted to 

the Van Genuchten equation to provide a means for 

determining the USBM index. Connate water saturation 

was based on the initial state of the simulation, which was 

determined by the maximum inscribed spheres method. 

The USBM indices and corresponding contact angle 

measurements for all of the models are reported in Table 

1.  

 

 

Fig. 6. Simulated capillary pressure versus saturation data for 

the W=0.1 wetting case (top). Simulated capillary pressure 

versus saturation data for the W=0.7 wetting case (bottom). 

Regression analysis was used to fit the Van Genuchten equation 

to the simulated data.  

 
Table. 1. Summary of pore-scale contact angle measurements 

and macro-scale USBM wettability indices. 

Case USBM* Mean θ (deg) 

Standard 

Deviation 

(deg) 

 W 0.1 0.7 0.1 0.7 0.1 0.7 

1  0.62  1.00 73.7 67.4 21.0 19.5 

2  0.76  0.96 73.0 67.2 20.8 19.0 

3  0.19  0.84 86.2 72.9 23.0 22.7 

4  0.10  0.88 87.4 70.9 23.4 21.6 

 

USBM indices near 1.0 result in contact angles less than 

70 degrees while indices around 0.5 or less result in 

contact angles greater than 70 degrees. It is interesting 

that Case 4 with USBM indices of 0.10 and 0.88 resulted 

in only a 16.5-degree difference in contact angle. The 

measured contact angles are a sampling of the grain 

surfaces where the common line exists. The finding is 

only a statement as to where on the grain surface the 

common line prefers to be located under the prevailing 

conditions. We also find that for a single overall wetting 



 

state (W) there was variability in the standard deviation of 

the measured contact angles. Models with more 

heterogeneous distributions of surface energies resulted in 

a wider range of contact angles. The trend, however, is 

minimal because of the previously discussed reasons 

regarding dynamics, hysteresis and numerical errors that 

also result in the observed contact angle distributions.   

 
Next, we attempt to predict all of the possible pore-scale 

contact angles and their associated probabilities for a 

system of fluid clusters. The prediction is provided by 

applying a statistical mechanics approach to Eq. 5. First, 

we define a probability density function for the apparent 

fluid/fluid curvatures, 𝜅𝐹1/𝐹2, based on Pc(Sw) data. We 

assume that a given fluid cluster can be located in any 

pore region of the rock based on the associated area under 

the Pc(Sw) curve. Through the Young-Laplace equation 

capillary pressure can be related to mean curvature. For 

axisymmetric interfaces, Gaussian curvature can also be 

determined since the two principal curvatures are equal. 

The Pc(Sw) curve is then divided into local ranges of 

Gaussian curvatures with associated probabilities.  

 
We consider that an oil cluster of a given volume could 

be located anywhere in the porous system based on the 

probability density function of 𝜅𝐹1/𝐹2. Eq. 5 then provides 

a distribution of possible 𝜅𝑔𝐹1/𝑆
 for a cluster. The 

𝜅𝑔𝐹1/𝑆
distributions for each cluster size that spans the 

entire power law distribution of cluster sizes are then 

determined. To determine the final distribution for a 

system of clusters, we then consider the volume 

distribution of clusters. We combined the distributions of 

𝜅𝑔𝐹1𝑆
 for individual cluster volumes using a weighted 

function based on cluster frequency, 

𝑋𝑇(𝑖) = ∑𝑤𝑗𝑥𝑗(𝑖)                                                 (7) 

where 𝑥𝑗(𝑖) is the counts for each contact angle 𝑖, and 𝑤𝑗  

is the weight for each cluster size j. Here, 

 𝑤(𝑗) = 𝑁𝑗/𝑁𝑇                                                        (8) 

where 𝑁𝑗 is the number of clusters of size j and 𝑁𝑇 is the 

total number of clusters. The result provides a distribution 

of apparent 𝜅𝑔𝐹1𝑆
 that can be compared to direct pore-

scale contact angle measurements presented in Figs. 4 and 

5.  

 
The predicted and measured contact angle distributions 

for W=0.1 homogeneous and W=0.7 corner-wet cases are 

presented in Figs. 7 and 8. The results are comparable 

with less than 4% difference for the average contact angle. 

We also compare the entire distributions as quantile 

differences and observe the largest difference of ~8% for 

smaller contact angles. 

 
Fig. 7. Measured pore-scale contact angles compared to those 

predicted by Eq. 5 using Pc(Sw) data (top). Percent differences 

for each quantile of the contact angle distributions (bottom). The 

black dashed line represents the mean contact angle.   

 



 

 
Fig. 8. Measured pore-scale contact angles compared to those 

predicted by Eq. 5 using Pc(Sw) data (top). Percent differences 

for each quantile of the contact angle distributions (bottom). The 

black dashed line represents the mean contact angle.   

4. Conclusions 

By using the Gauss-Bonnet theorem, we are able to 

understanding how Pc(Sw) and cluster size distributions 

are related to the geometrical state of the fluids [8,18]. 

This provides a direct link between the USBM method 

measured from Pc(Sw) data and microscale contact angle 

measurements. Our predictions of microscale contact 

angle distributions are within 4% difference for mean 

contact angle and around 8% difference for the smaller 

contact angles. The proposed method utilizes two 

assumptions that could have resulted in these differences. 

Firstly, we assume that the interfaces in pores are 

axisymmetric, which is not necessary the case for all 

porous systems. Secondly, we assume that all clusters 

could exist in all microscopic states of the porous media. 

This may occur (open question) at infinite time and space 

but for our limited observation this is questionable. In 

addition, it should be noted that the actual pore-scale 

contact angle measurements also have error and these 

errors would likely increase for smaller contact angles 

near rough surfaces. Thus, the assumed benchmark 

should also be questioned. Despite these issues the results 

are within a reasonable error margin and the developed 

framework provides new insights on the geometrical state 

of fluids [18] and how core analysis measurements can be 

used to understand these states [14]. The tested wetting 

cases demonstrate how the spatial variability of water-wet 

regions can influence the wetting state of the rock. By 

using the proposed framework, we can provide a 

reasonable distribution of microscale contact angles 

within a dynamical system without the need for direct 

measurements. These distributions could be used for 

network models, other modelling approaches, guiding the 

interpretation of special core analysis results and/or the 

development of more advanced theories for multiphase 

flow in porous media. 
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