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Abstract. A novel method for permeability prediction is presented using multivariant structural regression. 

A machine learning based model is trained using a large number (2,190, extrapolated to 219,000) of synthetic 

datasets constructed using a variety of object-based techniques. Permeability, calculated on each of these 

networks using traditional digital rock approaches, was used as a target function for a multivariant description 

of the pore network structure, created from the statistics of a discrete description of grains, pores and throats, 

generated through image analysis. A regression model was created using an Extra-Trees method with an error 

of <4% on the target set. This model was then validated using a composite series of data created both from 

proprietary datasets of  carbonate and sandstone samples and open source  data available from the Digital 

Rocks Portal (www.digitalrocksporta.org)  with a  Root Mean Square Fractional Error of <25%.  Such an 

approach has wide applicability to problems of heterogeneity and scale in pore scale analysis of porous media, 

particularly as it has the potential of being applicable on 2D as well as 3D data.

1 Introduction  

Flow and transport in porous media are fundamentally 

rooted at the scale of the tiny tortuous pore pathways 

through which the flow takes place. As such, pore scale 

investigation is now a widely adopted tool across a range 

of disciplines associated with the examination of flow and 

transport. Such an approach has applications ranging from 

understanding the flow properties of porous ceramics 

(used as a catalytic substrate for vehicle emission 

reduction) [1], [2], examining battery electrolyte 

exchange [3], [4], characterizing geological formations 

for the purpose of understanding groundwater flow [5], 

carbon capture and storage [6]–[8] and (in its most 

industrially applied application) oil and gas recovery [9]–

[12]. One of the most useful results from a holistic pore-

scale characterization is the prediction of effective 

medium properties, such as permeability [13], relative 

permeability [14], capillary pressure curves [15], and 

effective acoustic and electrical properties [16], [17]. 

Traditional approaches to the prediction of effective 

properties from porous media (e.g. permeability, 

diffusivity or effective conductivity) focus on coupling 

the 3D structural imaging of porous media with the full 

physical simulation of the partial differential equations 

governing the property of interest [13], [18]. Once the 

domain and physics have been defined (with appropriate 

boundary conditions), the physics then converges over 

multiple iterations. Such an approach is contrasted to 

more traditional (legacy) approaches for effective 

property estimation, such as Kozeny-Carman or 

Kuwabara [19], [20] techniques which feed a relatively 

limited and difficult to measure set of structural properties 

into quasi-analytical models to make flow estimations. 

These are typically inaccurate (e.g. [21]), may require 

significant (and arbitrary) correction factors and are 

challenging to effectively apply to real problems [22]. For 

example, different variants of the Kozeny-Carman 

equation require the knowledge of characteristic particle 

size, tortuosity or effective channel diameter – something 

typically ambiguous to measure in a real system of 

arbitrary pore network type. 

 

The past 10 years have seen an explosion in the 

availability of open source machine learning and 

computer vision tools, enabling both in-depth 

multivariant classification and analysis of porous media 

structure [23], [24] and powerful new regression 

techniques, facilitating the usage of such multivariant 

statistics for effective prediction [25]. The application of 

these tools and techniques to flow and transport in porous 

media has been limited. In this study these techniques are 

used to present a new technique for prediction of Stokes 

flow (viscous dominated) permeability from pore-scale 

images of rocks using multivariant statistical regression 

coupled with extensive synthetic geometry generation and 

pore-scale computational simulation. Pore structures were 

parameterized using 34 distinct statistical parameters, 

derived from specific discretized structural properties. 

This multivariant model is validated on an extensive open 

source digital rock dataset, comprising carbonate and 

sandstone pore geometries, giving an average prediction 

error of around 25% for predicted permeability values 

ranging over 6 orders of magnitude (10µD to 10D). 

2 Materials and Methods 

One of the biggest challenges in the application of 

machine learning based computer vision techniques to 
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digital rock analysis is that of data. Pore networks are 

complex, and the range of tools available for 

characterizing them is broad, so any multivariant 

characterization and prediction will require many datasets 

(potentially many thousands or millions) to effectively 

train while avoiding model overfitting, a difficult feat 

when each 3D image may take several hours to acquire. 

To overcome this obstacle, synthetic pore network 

generation techniques were used to generate a more 

extensive training set than would be available for real 

(imaged) structures. Early digital rock studies used 

synthetic pore space generation extensively to examine 

simple rock systems at the pore scale. While such an 

approach has been largely supplanted by direct imaging, 

synthetic techniques do present specific advantages, 

especially when examining mechanisms behind various 

processes while controlling the amount of heterogeneity 

[26], [27], or when trying to develop an holistic 

understanding of systems which are extremely 

challenging to characterize experimentally, such as the 

organic hosted pore networks present in unconventional 

shale reservoirs [28]. Synthetic pore spaces can either be 

constructed physically, usually by glass beads or etchings 

in glass (e.g. [29], [30]) or numerically using a pore space 

generator, using stochastic or object-based techniques, 

subject to  with various constraints (e.g. [31]–[33]).   

Two thousand, one hundred and ninety (2,190) synthetic 

intergranular pore networks were generated by modelling 

grains as convex polyhedral [34], randomly placed within 

the pore space under a range of packing conditions and 

statistical descriptions. Polyhedra were defined by 

picking vertices around a bounding ellipse, defined by 3 

axes (L1, L2 & L3, such that L1 < L2 < L3). All geometries 

were given a nominal voxel size of 1µm – a single 

nominal voxel size was used as the resulting permeability 

simulation results were then scaled across multiple 

nominal voxel sizes using the Hagen-Poisseuille equation 

as described below. 

To allow for a range of granular aspect ratios the axis 

lengths for each grain were picked from a normal 

statistical distribution, each defined by an average and 

standard deviation (µ1, µ2, µ3 and σ1, σ2, σ3). For 

simplicity the same distribution was used for the two 

shortest axes (µ1 = µ2 and σ1 = σ2). The ratio L3/L1,2 

(defining average grain aspect ratio) was randomly 

defined at the beginning, being a uniformly distributed 

random variable between 1 and 3. Similarly target 

porosity (φ) was a uniformly distributed random variable 

in the range 0.05 < φ < 0.7, as were µ1,2 (in the range 15-

60 voxels). σ1 and σ2 were determined using a coupled 

random variable in the range 5-35 voxels, and σ3 an 

independently determined variable in the same range. 

Multiple geometric packing strategies were used, 

including (in order of increasing computational expense) 

allowing grains to overlap [28], removing grain overlap 

and the explicit physical modelling of gravitational 

settling. The entire range of target porosities could be 

effectively modelled when allowing grain overlap; 

however when using the other techniques (which 

achieved higher grain packing densities than when 

allowing overlap) once the maximum packing density was 

reached grain networks were eroded and dilated to extend 

the networks over a wider array of porosities. 

Computationally cheaper techniques allowed for more 

complex statistical descriptions (along with larger total 

geometries) to be used, including multi size component 

grain distributions. A set of various different synthetic 

images are shown in figure 1. 

 

Figure 1 - A) A dual grain size system, with one grain population 

having a largest axis of 25µm and one population having a 

largest axis of 43µm. B) A dual grain size system, with one grain 

population having a largest axis of 22µm and one population 

having a largest axis of 35µm. C) A dual grain size system, with 

one grain population having a largest axis of 56µm and one 

population having a largest axis of 86µm. D) A single grain size 

system with a largest axis length of 19µm. 

Structural statistics were calculated on a range of 2D 

slices through each 3D volume. It was decided  to make 

measurements in 2D rather than on the full 3D network as 

it was more computationally tractable (and trivially 

parallelizable) and allows for the same model to be 

applied on 3D networks (acquired with XRM and FIB-

SEM) and 2D structures (such as those characterized 

using light or electron microscopy). The application of 

these techniques to 2D systems is an interesting target of 

future work, but beyond the scope of this paper. Inherent 

biases and errors associated with 2D rather than 3D 

measurements are inherently accounted for in the relative 

weightings of different measurements during statistical 

multivariant regression. Grains and pores were then 

separated using a watershed algorithm operating across an 

Euclidian distance map [35], [36], with object seeds 

filtered using the “h-maxima” algorithm (figure 2). While 

such a technique has its limitations when dealing with 

complex network geometries [37], relatively simple 

networks can be effectively characterized [38]. Perhaps 

more important was that a perfect granular separation was 

not required, just that any object separation errors were 

consistent between training and validation series of data. 

For example, differential errors in grain separation for 



 

systems with large grains (relative to the voxel size) 

relative to systems with smaller grains (relative to the 

voxel size) are implicitly accounted for by the large array 

of different grain sizes in the training set. The same errors 

will be present in both the training and the final (imaged) 

datasets, and therefore the impact of any errors on 

prediction will be minimized.  

 

Figure 2 - Feature vector extraction. A) Grain separation. B) 

Pore separation. C) Throat identification (throats shown in 

yellow). D) Grain size distribution, showing a multimodal 

population distribution.  

Once grains and pores were separated, population 

statistics were computed on features from these different 

populations, including grain, pore and pore throat sizes, 

shape averages, distributions, and network connectivity. 

This created a large (34 component) feature vector set for 

each network. The range of structural feature vectors (as 

well as their relative importance is shown in figure 3. The 

relative feature importance is defined as fraction of the 

decision tree associated with the permeability prediction 

decision tree [39], or the number of nodes in the decision 

graph associated with that feature. The 21 most important 

features had feature importances larger than 10% of the 

most important feature vector in the set (the standard 

deviation in the inscribed throat radius). Such a broad 

distribution in importances is an indication of both the 

complexity of the problem and the power of such a 

multivariant approach – a large number of different 

structural metrics are required to achieve a high quality 

prediction. An extensive evaluation of specific feature 

impacts in such a complex multivariant model, as well as 

an examination of the impact of changing numbers of 

input parameters and parameter selection on model 

performance would be an interesting target for future 

work. The requirement of the use of a large number of 

network characteristics is unsurprising, particularly given 

the requirement to make predictions using only features 

extracted in 2D. The goal for this approach is ultimately 

to generate a model which can be applied on 2D data (for 

example light or electron microscopy), and a greater 

exploration of this is the target for future work. It is likely 

that, should features be extracted in 3D, a more accurate 

prediction could be made, potentially with a smaller 

number of extractable features, but this model would not 

have the potential of being (ultimately) transferred to 2D 

analytical techniques. 

 

Figure 3 - distribution of feature vector importances. 

It is interesting that the most important parameter (the 

parameter which is responsible for the greatest number of 

nodes in the forest of decision trees) is that of the standard 

deviation in inscribed pore throat radii. This corresponds 

to whether or not the porous medium is homogenous (has 

a uniform fluid velocity distribution) or heterogeneous 

(has a more channelized fluid flow distribution). As the 

flow rate is non-linearly sensitive to changes in throat size 

(equation 1, below) it is not surprising that the distribution 

in throat size has a strong control on flow rate. Similarly 

it is unsurprising that the second and third most important 

features are the average inscribed pore and pore throat 

radii respectively. 

Flow was then simulated on each of these synthetic 

volumes using traditional digital rock techniques [40], 

giving the permeability for each network. Each of the 

synthetic networks had a nominal voxel size of 1µm; 

however, a much broader range of pore network statistics 

(with associated permeabilities) could be generated by 

examining analytical solutions to the Navier-Stokes 

equation within the viscous dominated regime (such as the 

Hagen-Poiseuille equation, equation 1) 

∆𝑃

∆𝐿
=

8𝜇

𝑟2
𝑣     (1) 

where ΔP/ΔL is the pressure gradient, µ is the viscosity, r 

the pipe radius and v the (linear) fluid average velocity. 

For any (defined) structure, a Stokes flow solution to the 

Navier-Stokes equation will predictably scale as the 

square of the spatial length scale. As such any change in 

nominal voxel size (for a topologically and 

topographically defined network) should change 

  

  



 

permeability values similarly. An arbitrarily extended set 

of network statistics could therefore be created, scaling 

each (dimensioned) measure appropriately with the voxel 

size, and the permeability values with its square. An 

extended set of 219,000 network statistics were created 

using this technique, with nominal voxel sizes ranging 

from 10nm to 10um and predicted permeability values 

varying over 10 orders of magnitude (from from 10-25m-2 

to 10-7m-2, with a 10-90 percentile range of 1.2×10-18m-2 – 

9.25×10-12m-2) (figure 4).  

 

Figure 4 - distribution of training permeability values. 

At first inspection it seems like such an approach adds 

little to the overall training dataset – they are just 

generated by extrapolation. The key to understanding its 

utility is that the regression is designed to be performed 

on real (measured) datasets with real pixel sizes. The same 

network will have different permeability values if you 

change its nominal voxel size, and any model must be 

trained on volumes spanning the entire range of pixel 

sizes of interest. One way to extend the pixel size range of 

the training set is to randomly assign pixel sizes, however 

this will decrease the training dataset density at any 

specific spatial length scale. Instead Hagen-Poiseuille 

extrapolation was used as it allows for all the training 

datasets to be available to the training algorithm at all 

spatial lengthscales. 

3 Results and discussion 

This extended dataset of multivariant structural statistics 

was split into “training” and “testing” sets (with 80% of 

the data belonging to the training set, and 20% belonging 

to the test set). The training set was then regressed against 

the natural logarithm of the permeability using open-

source machine learning tools (www.scikit-learn.org) 

using a randomly seeded Extra-Trees (decision tree 

based) ensemble algorithm [41]. Total training time on a 

40-core workstation was around 12 seconds. A natural 

logarithmic representation of permeability was used for 

regression as it allowed prediction errors to be evenly 

distributed across the entire range of permeability – a 

linear representation would have concentrated prediction 

errors strongly towards the largest permeabilities, 

overfitting these values and underfitting the rest of the 

dataset. Another way of viewing this is that a logarithmic 

representation essentially forces the algorithm to 

minimize fractional (rather than absolute) errors in the 

regression model. This model was then tested on the test 

set, finding a Root-Mean-Square-Fractional-Error 

(RMSFE) of <4% (figure 5).  

 

Figure 5 - Root Mean Square Fractional Error (RMSFE) 

distribution   

One major question when applying this model (trained on 

synthetic networks) to real datasets is whether the 

synthetic images really represent real imaged pore 

networks. A composite set of real digital rock images to 

validate the predictive model for more general use. This 

composite set of 36 images consisted of a range of open 

source volumes taken from the Digital Rock Portal 

(www.digitalrocksportal.org), previously published data, 

and new nano-CT datasets from micritic carbonate 

microporosity. This constituted two qualitatively different 

pore networks (the intergranular pore networks common 

in sandstones and micritic microporosity common in dual 

porosity carbonate reservoirs. While there are significant 

differences in chemistry and scale for the networks, in 

both cases the grain networks consist of euhedral to sub-

hedral sub-angular clasts, so they may have a similar 

relationship between pore structure and flow properties 

and have grains which are well represented by convex 

polyhedra. 

The unsegmented datasets were segmented using state-of-

the-art machine learning based segmentation [24] (Zen 

Intellesis). Flow was then simulated on each of the 

segmented datasets, with predicted permeabilities ranging 

over 6 orders of magnitude (10µD to 10D). These 

predictions were then compared with multivariant 

predictions with a RMSFE of <25% across the entire 

range (figure 6). 

http://www.scikit-learn.org/


 

 

Figure 6 - correlation between simulated permeabilities and 

permeability predicted using multivariant regression. 

Such a result is extremely encouraging – while the 

prediction error was higher in the (real) validation datasets 

than the (synthetic) test datasets, the prediction error was 

still relatively small. Predictions were accurate across 

multiple pore network types (both intergranular sandstone 

pore networks and micritic microporosity), and a wide 

range of length scales and permeability values. 

This technique offers multiple advantages over both 

traditional (full physics) simulations and legacy 

estimation techniques. First, while analysing and 

simulating flow on the thousands of training images was 

computationally expensive, applying it to each imaged 

dataset was relatively cheap. As such it is significantly 

faster to apply than traditional techniques, with a large 

volume prediction taking less than a minute on standard 

lab computational resources, where a full physics 

simulation of the same result might take many hours. 

Perhaps the most important advantage of this technique, 

however, is it has the potential of greatly expanding the 

forms of data applicable to quantitative flow prediction, 

as the features used for both regression and prediction can 

be extracted in 2D as well as 3D. This allows for effective 

property prediction from structural analysis of 2D data 

(e.g. light or electron microscopy), which can be acquired 

over much larger areas (allowing a much better 

characterization of structural heterogeneity), can be 

acquired much faster, and offers qualitatively richer data 

(giving information about mineralogy, geochemistry or 

texture not present when using 3D imaging techniques).  

A significant drawback to traditional techniques for 

permeability estimation (like Kozeny-Carman) is the 

challenging and arbitrary nature of the measurement of 

their constituent parameters [42]. A significant advantage 

of multivariant regression-based techniques is that all 

inherent errors in measurement are included when 

performing the regression - the minimization of the 

prediction error implicitly includes the minimization of 

the impact of any systematic measurement errors. The 

general approach for the prediction of effective medium 

properties based on multivariant structural statistics can 

be extended to other systems through the incorporation of 

either other synthetic pore network generation routines or 

re-enforcement learning with real (imaged) data. There is 

also significant scope for future development in the 

extraction of structural statistics, including the usage of 

multi-point statistical characterization [43] or recently 

developed persistent homology metrics [44].  Future work 

will focus on the examination of the usage of such large 

area predictive statistical techniques to validate and 

inform upscaling techniques, allowing for integration of 

multiple scales of data in single predictive models. 

4 Conclusions 

A novel method for permeability prediction using 

multivariant statistical regression is presented. Over 2,000 

synthetic geometries were created by modelling granular 

media using convex polyhedral. Full physical simulations 

were performed on all of these datasets. The resulting 

permeability values were used as a target function for a 

high dimensional description of the volumes, created from 

structural statistics of rock grains, pores and throats. The 

regression model was trained with an error of less than 4% 

in the test data. Validation of this model was performed 

on a composite series of 36 independent datasets , taken 

from both an open source data source 

(www.digitalrocksportal.org) and proprietary data from 

carbonate microporosity. These datasets range in pore 

system from carbonate microporosity to intergranular 

sandstone pores, with pixel sizes ranging from 10µm to 

32nm and permeabilities ranging over 6 orders of 

magnitude from 10µD to 10D. Predictions in this 

validation set showed a RMSFE of less than 25% over the 

entire range. 

Differences in error between the validation and test data 

provide an interesting insight into the validity of the 

synthetic datasets in training multivariant models – while 

they do not perfectly represent real (imaged) data, they are 

close enough to accurately predict data across length 

scales. Interesting future work could focus on expanding 

the training dataset to include networks representative of 

other pore systems, either through an expansion of 

synthetic generation techniques or through the 

incorporation of real imaged geometries. 

Such an approach to permeability prediction is extremely 

promising for addressing many problems associated with 

pore scale analysis of geological materials, particularly 

those associated with scale and heterogeneity. By 

reducing the relative computational complexity of 

simulation larger geometries can be efficiently analysed. 

Perhaps more exciting is the application of these tools 

(trained on 2D slices through 3D volumes) to other pore 

structural analytical technologies operating in 2D. These 

techniques are able to address much larger linear length 

scales, thereby enabling for a much more effective 

assessment of structural heterogeneity. They also allow 

for the incorporation of analytical information not 

accessible in 3D. 
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