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Abstract. The integration of numerical simulation and physical measurements, e.g. digital and conventional 

core analysis, requires the consideration of significant sample sizes when heterogeneous core samples are 

considered. In such case a hierarchical upscaling of properties may be achieved through a workflow of 

partitioning the sample into homogeneous regions followed by characterization of these homogeneous regions 

and upscaling of properties. Examples of such heterogeneities are e.g. fine laminations in core samples or 

different micro-porosity types as consequence of source rock components and diagenesis. In this work we 

utilize regional measures based on the Minkowski functionals as well as local saturation information derived 

through a morphological capillary drainage transform as a basis for such a classification/partitioning. An 

important consideration is the size of the measurement elements utilized, which could be considerable in the 

case of larger heterogeneities; in such case the calculation of the regional measures can be computationally 

very expensive. Here we introduce an FFT approach to calculate these measures locally, utilizing their 

additivity. The algorithms are compared against direct summation techniques and shift-overlap approaches 

for a selection of different averaging supports to illustrate their speed and practical applicability. We consider 

a range of artificial Boolean models to illustrate the effect of including hydraulic information on the resulting 

classifications scheme. This allows the determination of bias, since for these model systems local classes are 

known ab-initio. The classification framework is tested by comparing to the known initial micro-structure 

distribution and relative bias quantified in terms of choice of averaging elements (size and shape). 

Importantly, depending on the actual morphological transition between micro-type partitions, partitions 

including hydraulic attributes differ from pure morphological partitions with applications to electrofacies and 

hydraulic unit definitions. 

1 Introduction  

Rock type classification is an important topic in reservoir 

characterization and spans a large range of scales from 

seismic interpretation (meter scale [1]) to well logging 

(down to centimeter scale [2]) and further down in scale 

to core analysis. It forms part of an upscaling strategy 

involving the correlation of classes of different type, 

purpose, or origin; e.g. lithofacies vs. electrofacies 

(distinguishable classes based on well-logs). However, 

reservoir heterogeneity extends to even smaller scales.  

The rapid development of (micro-) X-ray CT 

techniques exposes rock heterogeneity down to the order 

of microns, at the pore-scale, in 3D. While the calculation 

of petrophysical properties and correlations has been 

demonstrated for a range of properties including e.g. 

electrical conductivity, elastic moduli, mercury intrusion 

capillary pressure, and permeability [3]-[7], this is for 

homogeneous sandstones of limited clay content. For 

more complex carbonates cross-variograms between 

porosity and permeability and multiple imaging length 

scales [8] may be utilized. Often one may however want 

to utilize a hierarchical upscaling approach based on core-

scale rock-types to integrate several length scales and 

multiple physical properties, including for thinly 

laminated sandstones. While petrophysical rock-types 

may include such laminations and thus anisotropy caused, 

describing fluid flow leads to a homogenization problem 

which can be approached at the Darcy scale [9], or 

numerically through partial homogenization [10] by 

solving the Brinkmann equation. Either way, a 

classification technique for scale separation is required. 

Classification techniques targeting petrophysical 

interpretation are not new. Archie developed a method of 

skeleton classification with a few petrophysical 

parameters in [11].  Skalinski and his colleagues used pore 

throat distributions as the main parameter for pore type 

classification with mercury injection pressure 

measurement data of many rock samples [12].   

Characteristics of fractures and vugs of carbonate rocks 

were extracted from micro-CT images in [13]. Dernaika 

et al. [14] calculated porosity and mineralogy of core 

samples from advanced dual energy XCT imaging and 

linked to plug data after upscaling. 

Schmitt and colleagues considered pore shapes 

(length, width, thickness, orientation) in reservoir rock 

from 3-D X-ray micro-CT images [15], limiting 

themselves to large pores due to the higher resolution 
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requirements for deriving these measures. Alternately, 

one may characterize microstructure utilizing the additive 

morphological measures volume, surface area, mean and 

total curvature, namely the Minkowski functionals [16], 

which can be evaluated easily on a segmented tomogram 

[17], [18] and have been used in the past as sensitive 

descriptors of morphology [17]-[22]. The strong 

correlation of physical properties of Boolean models to 

morphological properties, the Minkowski functionals 

[23],[24], motivates the use in rock-typing approaches. 

This was done in [25] for a thinly laminated sandstone 

using a 1D sliding measuring window approach and in 3D 

using non-overlapping regions of the image. A high-

resolution field of morphological regional measure could 

not be computed due to computational cost. In [26] a 

support shift technique was utilized for the computations, 

which however still does not scale to large supports, as we 

require in this work. We define as support of a 

measurement a small (regional) volume within the 

sample, and over which an average is taken. A larger 

support is desirable to reduce the standard deviation of 

such a measure.\\ 

Another relationship often used in rock-typing 

approaches is given by mercury intrusion capillary 

pressure (MICP) curves [27]. In terms of micro-CT 

approaches this type of information can be gained either 

by direct imaging approaches [28], or by modeling the 

MICP process numerically [29],[30]. Capillary pressure 

heterogeneity was also inferred from regional saturation 

distributions in [31], while [32] considered non-wetting 

phase cluster distributions. 

The resulting question we target in this work is 

whether the inclusion of hydraulic information – taken to 

be local fluid saturation – changes rock-types defined on 

the basis of the Minkowski functionals alone as basis for 

petrophysical rock-types due to their strong relationship 

to physical properties. We utilize the decomposition of the 

Minkowski functionals into histograms over vertex 

configurations to implement (fast) calculations of the 

Minkowski measures over large support via Fast Fourier 

Transforms (FFTs). The technique is compared against 

more direct implementation schemes on a set of artificial 

microstructures and applied to the classification of 

laminated Boolean composites. Classifications based on 

the Minkowski measures alone are compared with ones 

including a saturation attribute and resulting bias is 

discussed. 

2 Methodology  

In this section we review the basic techniques utilized in 

this work. We introduce the Minkowski functionals and 

measures as a full set of additive measures of 3D space, 

regional measures based on these definitions over a finite 

support, as well as resulting curvature density fields and 

algorithms to calculate them. Finally, for demonstration 

of the algorithms we introduce a set of Boolean 

composites featuring forming layered media. 

 

2.1 Minkowski functionals  

In this work we follow the notation of [26]. Consider a 

body Y in ℝ3 with sufficiently smooth surface ∂𝑌. Then 

the additive geometrical characteristics are volume V(Y), 

surface area S(Y), integral of mean curvature M(Y) and 

integral of total curvature K(Y) with surface integrals 

 

 
Here r1(s) and r2(s) are the maximum and minimum 

curvature radii in s. The above characteristics are related 

to the intrinsic volumes via  

 
 

On the segmented tomogram the intrinsic volumes can 

be determined by evaluating the histogram of the 

individual vertex configurations. Excellent illustrations of 

this process have been given in [17], [33]. Here we 

consider the grain phase as the phase of interest; all other 

phases are merged for this calculation and the 

characteristic function of the structure takes the value of 

1 for the granular phase and 0 otherwise. A vertex made 

up of eight voxels can then be in 28 = 256 different 

configurations, where each configuration has a certain 

contribution to volume, surface area, mean, and total 

curvature. Lookup tables for these contributions has been 

given in [17], [33]. We use the 8-neighbourhood for 2D 

connectivity and 26-neighbourhood for 3D connectivity 

as given in [17]. For a recent review of the applications of 

integral geometry in porous media see [19]. 

2.2 Regional curvature measures  

To define a measure over a finite volume we consider the 

average over regions of spherical and ellipsoidal shape. 

For a given position of this support in the actual 

tomographic images we then evaluate all vertices of the 

discrete tomogram, where the centers of the vertices are 

within the measurement window.  

Consequently, the regional measures can then be 

derived from the local configuration histogram over the 

given spatial support. Evaluating the regional measures 

for a regular grid of support vectors will generate a set of 

morphological fields V(r), S(r), M(r), K(r). We report all 

measures as curvature densities, e.g. normalized by the 

averaging volume. 



 

 

Fig. 1. Computational times for the Minkowski measure field 

generation for a 4003 sub-volume of a segmented Bentheimer 

sandstone sample as function of radius of a spherical support 

(radius in voxel, single processor). 

2.2.1 Curvature density fields by direct summation 

The most direct approach for calculating the curvature 

density fields simply places the spatial support at a 

position-of-interest, evaluates the configuration 

histogram, and stores the result at the respective position, 

looping over the curvature measure grid. For dense strides 

of the support this leads to significant overlap of support 

volumes for adjacent evaluations; thus, large numbers of 

vertices are evaluated multiple times for large 

measurement support, e.g. large radii of a spherical 

support. This naïve approach therefore does not scale well 

with increasing support size, as it scales with support 

volume. 

2.2.2 Curvature density fields by support-shift algorithms 

A somewhat more efficient way recognizes this partial 

support overlap and only evaluates vertices anew which 

are added to the support volume after a shift on the lattice, 

e.g. stride along a lattice direction with a fixed step size; 

the same number of vertices will be removed and added 

from the histogram for each support shift when shifting in 

the same direction. This approach scales significantly 

better, and essentially scales with the surface “area” of the 

support for small strides; it takes direct advantage of the 

additivity of the Minkowski measures. 

2.2.3 Curvature density fields by FFT methods 

The additivity of the curvature measures allows a much 

more efficient approach to deriving regional measures. 

This approach utilizes a convolution of the support with 

the vertex configuration field, thus deriving the curvature 

density fields by a series of Fast Fourier Transforms 

(FFTs) and adding up the curvature contributions to each 

regional measure according to the lookup table of [17]. In 

this case the size of the support has essentially no 

influence on the speed of the algorithm. Very large 

support volumes and arbitrary support shapes can be 

utilized this way. 

[a]  

[b]  

Fig. 2. 2D slice through a layered Boolean model with two 

generating sphere processes, one for each layer. [a] generated 

microstructure, [b] microstructure partially saturated by a non-

wetting phase with invasion radius ri = 6.6. Sphere radii are r1 = 

13 and r2 = 26. The microstructure has dimensions of 1200 x 

1000 x 800 voxels after removal of boundary regions in arbitrary 

units. Blue denotes the invading non-wetting phase. 
 

A comparison of the relative performance of the 

algorithms is given in Fig. 1 for a sub-volume of a 

segmented tomogram of Bentheimer sandstone. Clearly, 

using large averaging volumes becomes very costly with 

the non-FFT based algorithms applied here, while the FFT 

approach scales well, e.g. is independent of averaging 

volume. A significant speedup of the FFT method can be 

achieved by utilizing the rotational symmetry of the 

possible vertex configurations [17]. For the FFT method 

we consider both spherical and ellipsoidal measure 

supports. In practice the size and shape of the 

measurement support may be chosen through structural 

analysis, utilizing variograms [26], and considering that 

the resulting rock-types should be compact, e.g. do not 

have too many holes. Due to additivity and the availability 

of parallel FFT libraries for various architectures the 

proposed technique easily scales to largest datasets. 

2.3 Boolean model  

We generate layered synthetic micro-structures by 

controlling the generating grains of a Boolean (or Poisson 

particle) process according to an initial (known) layered 

distribution of two rock-types: after choosing a Table. 1 



 

Structural details of dry sample in Figure 2. The generating 

shape for both layers is spheres. 

Formation Thickness 

(voxel) 

Porosity Particle 

Radius 

(voxel) 

Layer 1 300 0.242 13 

Layer 2 300 0.244 26 

 

random location to place a particle the particle shape and 

size is decided by the corresponding pre-defined rock-

type: Similar microstructure modeling approaches were 

presented in [10], [25], [30] for a more general 3D case, 

which was not required here for the demonstration of the 

technique. Placing a spherical particle of radius r at a 

random location results in a decrease of porosity. Particles 

can overlap into adjoining rock-types and the particle 

placement process is stopped when both rock-types 

achieve their target porosity. A 2D slice through a 3D 

realization of a Boolean layered system with two different 

sphere sizes of r1 = 13 voxels and r2 = 26 voxels is given 

in Fig. 2a. The structure parameters are summarized in 

Table 1. 

2.4 Simulated non-wetting fluid invasion 

We model the invasion of the synthetic rock with a non-

wetting fluid by utilizing the capillary drainage transform 

[7], [24] with a fixed saturation chosen to provide 

additional contrast between the different rock-types. This 

is achieved by selecting an invasion radius below the 

critical radius of percolation for the larger-scale porosity, 

but above the critical radius of percolation for the smaller-

scale porosity. A 2D slice through the saturated medium 

at Sw = 0.38, corresponding to an invasion radius of ri = 

6.6 is given in Fig. 2b. The critical radii for the two sphere 

composites making up the layers are rc1 = 4 and rc2 = 9. 

Note that the original samples were 1600 x 1200 x 1600 

voxels. We selected the inner 1200 x 1000 x 800 region 

for further analysis in order to avoid boundary effects 

resulting from simulated capillary pressure fluid 

distributions. 

2.5 Rock-type classification 

We carry out the classification into different rock-types 

on the regional curvature measures and saturation field. 

This is achieved by defining the centroids of a Gaussian 

Mixture Model (GMM) in a supervised way by selecting 

the central zones of the layers as can be seen visually. The 

GMM centroids have cross-variance matrices of size 4 x 

4 each (curvature measures only) or 5 x 5 (including 

saturation), which together with the respective means are 

derived upfront from statistics of unambiguous regions. 

3 Results 

The application of an ellipsoidal measurement support 

with half-axes of a=120, b=30, c=120 and resulting 

curvature and saturation fields is given in Fig. 3. The 

averaging support size and shape was chosen to avoid 

generating holes in the resulting classification and 

respecting the evident layering. The corresponding 

histograms of the regional measures are given in Fig. 4. 

Recall that the porosity of the two rock-types is essentially 

the same. Consequently, there is no real contrast in the 

solid volume measure (Fig. 4a). The different color scales 

(Fig. 3b) are a consequence of different grain sizes, the 

larger structure showing the more extreme values. We 

observe a clear separation of rock-types in the surface area 

density as one would expect (Fig. 3c, Fig. 4b), with small 

spheres corresponding to the larger surface area 

contributions. The 2D slice illustrates the strong layering 

detected by surface area, while the histogram illustrates a 

good separation with a moderate area one could interpret 

as overlap region. An equally sharp contrast in layers is 

visible in Fig. 3d, corresponding to mean curvature. The 

smaller values (larger in magnitude) correspond to the 

small spheres. The corresponding histogram (Fig. 4c) 

shows an excellent separation with only a small area 

between peaks. Consider now the total curvature measure 

(Fig. 3e, Fig. 4d). The smaller sphere regions show a 

stronger connected behavior expressed by the more 

negative total curvature measure. Compared to this, the 

larger sphere regions exhibit a negative peak suggesting 

connectivity of both phases, but with some values 

becoming positive. Even larger measurement supports 

may lead to an even better separation of layers for this 

measure. Finally, the saturation field offers an approach 

to generate contrast between different rock-types by 

capillary pressure, here in a static sense; we consider this 

a hydraulic attribute for rock-typing. The measure is 

potentially attractive for low resolution image 

classification as such contrast can be generated either by 

simulation or by actual differential tomographic imaging 

(dry & wet imaging). From the 2D cross-section of the 

saturation map we observe that for the given invasion 

radius the rock-type with smaller features remains largely 

fully saturated with wetting fluid, with some exceptions 

close to the boundary, making the interface between rock-

types less consistent (Fig. 3f). The corresponding 

histogram shows a huge spike for Sw = 0 (truncated), and 

a somewhat distributed peak with a significant transition 

zone otherwise. 

The distribution of the curvature and saturation 

measures is further summarized in Fig. 5 through a 1D 

profile. We emphasize that the procedures introduced here 

are general for 3D; however, given the special nature of 

the laminated samples it is logical to also provide a 

corresponding 1D log. 

Consider now the resulting rock-type classifications of 

the laminated microstructure for the case of the ellipsoidal 

measurement support of a=c=120 voxel and b=30 voxel 

via the GMM procedure. We illustrate the sharpness of 

the boundary both by taking 2D slices perpendicular to the 

bedding direction (Fig. 6) and by illustrating the resulting 

classification as 1D log (Fig. 7). For the case of using the 

Minkowski measures only as basis for the classification 

the recovered interface between the rock-types is sharp 

and coincides well with the original interface. Adding 

water saturation to the classification basis results in a 

somewhat smoother  



 

 

  
(a) (b) 

    
(c) (d) 

    
(e) (f) 

Fig. 3. 2D-cuts through fields of the regional Minkowski measures and hydraulic property. The averaging support is of ellipsoid shape 

with half-axes of a=120, b=30 and c=120 voxels. (a) original sample, (b) solid volume solid, (c) surface area, (d) integral of mean 

curvature, (e) integral of total curvature, and (f) fluid saturation over total volume. All volumes are 960 x 940 x 560 voxels 

corresponding to all locations where the full size of the measuring window is contained within the sample (see also Fig. 2). Scales are 

given at the bottom of the figures; for distribution of the values in (b-f) see Fig. 4. 



 

 

[a]  

[b]  
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[d]  

[e]  

Fig. 4. Regional curvature measure and saturation distribution 

functions for the Boolean layered model. Ellipsoidal averaging 

element with a=c=120 voxels and b=30 voxels. [a] Solid 

volume, [b] surface area, [c] mean curvature, [d] total curvature, 

[e] defending phase saturation (point at zero saturation of 0.16 

is truncated, e.g. of the scale). 

 

Fig. 5. Profile of the curvature and saturation measures along the 

y-dimension, e.g. averages over slices parallel to the layering. 

Ellipsoidal averaging element with a=c=120 voxels and b=30 

voxels. The red lines indicate the actual rock types and their 

boundaries. For a cut through the corresponding 3D fields of 

regional measures in color see Fig. 3b-f. All measures are given 

in lattice units. 
 



 

     

(a) (b) 

          

(c) (d) 

Fig. 6. 2D slices through the recovered layer systems from 

morphological descriptors and fluid saturation with different 

measuring window size. Left: classification based on Minkowski 

descriptors only. Right: combination of Minkowski descriptors 

and fluid saturation. (a,b) ellipsoidal averaging elements with 

a=c=120 and b=30 voxels, (c,d) a=c=160 voxels and b=40 

voxels. 

 

transition of the rock-types; furthermore, an apparent bias 

in the position of the boundary is introduced. We attribute 

this to an internal invasion boundary condition, e.g. a 

pore-scale saturation transition zone. This interpretation 

is supported by Fig. 6b and Fig. 6d, showing local 

misclassifications likely due to local heterogeneities in 

structure, allowing invasion of the boundary at lower 

capillary pressure. This local variation in saturation is also 

evident in Fig. 7. 

 

 
[a] 

 
[b] 

Fig. 7. 2D slices through the recovered 3D layer type 

distribution along Y dimension, overlapping original sample. 

The curve in (a) is recovered from the four Minkowski 

descriptors while (b) is recovered from Minkowski descriptors 

and fluid saturation. The blue color depicts the non-wetting 

phase saturation calculated by a MICP simulation. 

We further quantify the relative boundary bias by 

scanning through each x-z column along the y-axis, 

calculating both the mean and standard deviation of the 

interface location for the case two different averaging 

element sizes and the Minkowski measures only versus 

including water saturation as additional hydraulic 

discriminator. The respective measures are reported in 

Table 2. The curvature measures alone recover the 

thickness of all layers almost exactly for both averaging 

ellipsoidal supports (b = 30 and b = 40, a = c = 4b). There 

is little variation in the location of the interface as well, 

e.g. no significant undulations are introduced, which is 

visible in the small standard deviation. Adding water 

saturation to the classification basis increases standard 

deviation significantly and introduces considerable bias 

towards the larger-scale rock-type.  

 
Table 2. Boundary information of different descriptors under 

various window sizes. 

 

4 Conclusions 

In this work we introduced a fast FFT based algorithm for 

the calculation of regional curvature fields in 3D for the 

case of large measurement supports. The algorithm was 

demonstrated on a layered Boolean microstructure 

mimicking a laminated sandstone. It provides linear 

scaling with sample size and does not depend on the 

spatial support size. This allows the use of large spatial 

supports for rock-typing purposes utilizing the 

Minkowski functionals. 

We further illustrated the classification bias 

introduced by including hydraulic information into the 

classification basis. For the given model rock, the 

strongest discriminator in terms of interface sharpness 

was regional mean curvature, followed by regional 

surface area. Including hydraulic information into the 

classification basis resulted in a smoother boundary 

transition which overestimated the relative fraction of the 

larger scale porosity. 
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170 300 300 170

Mean 168 298 300 173

Std 4 6 6 10

Mean 132 367 225 216

Std 7 9 15 17

160 300 300 160

Mean 155 299 293 172

Std 15 29 29 72

Mean 122 374 220 204

Std 16 33 29 63
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