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Abstract. With the advancement of high-resolution three-dimensional X-ray imaging, it is now possible to 

directly calculate the curvature of the interface of two phases extracted from segmented CT images during 

two-phase flow experiments to derive capillary pressure. However, there is an inherent difficulty of this 

image-based curvature measurement: the use of voxelized image data for the calculation of curvature can 

cause significant errors. To address this, we first perform two-phase direct numerical simulations to obtain 

the oil and water phase distribution, the exact location of the interface, and local fluid pressure. We then 

investigate a method to compute curvature on the oil/water interface. The interface is defined in two ways. In 

one case the simulated interface which has a sub-resolution smoothness is used, while the other is a smoothed 

interface which is extracted from synthetic segmented data based on the simulated phase distribution. 

Computed mean curvature on these surfaces are compared with that obtained from the fluid pressure 

computed directly in the simulation. We discuss the accuracy of image-based curvature measurements for the 

calculation of capillary pressure and propose the best way to extract an accurate curvature measurement, 

quantifying the likely uncertainties. 

1 Introduction  

Capillary pressure, Pc, is a pressure discontinuity 

across the interface between oil and water, defined as Pc 

= Po−Pw, where Po and Pw are the pressures of oil and 

water phase, respectively. Traditionally, capillary 

pressure for oil/water systems has been measured in a 

laboratory using the porous plate method in which the 

pressure of each phase is measured using two external 

pressure transducers. Based on the Young-Laplace 

equation, capillary pressure locally is defined as: 

 mcP 2= , (1) 

where σ is the interfacial tension between two phases and 

κm is the mean curvature of the interface. 

With the advancement of high-resolution three-

dimensional X-ray imaging, it is now possible to directly 

measure the curvature of the interface extracted from 

segmented CT images during two-phase flow experiments 

to derive capillary pressure. Armstrong et al. [1] 

demonstrated this approach using synchrotron-based 

tomographic datasets of oil/water drainage and imbibition 

cycles on a bead pack structure [2]. They compared the 

capillary pressure obtained from curvature measurements 

with that obtained from pressure transducers. Fairly good 

agreement was obtained for imbibition, whereas the 

curvature measurement showed a systematically lower 

value than that obtained from the transducers for drainage 

cycles. Later, using the same dataset, Li et al. [3] 

presented that their proposed curvature measurement 

method improved the agreement with the transducer 

based capillary pressure. Using a similar curvature 

measurement method, Herring et al. [4] estimated the 

capillary pressure for a range of curvature between 0 and 

0.225 voxel-1 based on their air/water drainage and 

imbibition experiments on a Bentheimer sandstone. 

However, there is an inherent difficulty of this image-

based curvature measurement: the use of voxelized image 

data for the calculation of curvature can cause significant 

errors, resulting in a wide range of measured values, with 

some negative curvature values, which are not expected 

in a water-wet system. Hence, it is not clear how the 

distribution of measured curvature values represents the 

true range of local capillary pressure. 

We investigate the accuracy of curvature 

measurement on the basis of pore-by-pore comparison 

using direct numerical simulations of two-phase flow. The 

color-gradient lattice Boltzmann method is employed to 

generate an oil and water phase distribution in pore 

structures of a bead pack and Bentheimer sandstone. From 

the simulated phase distribution, synthetic segmented data 

is generated, then curvature computation on the interface 

extracted from this segmented data is performed by 

employing several smoothing methods. These curvature 

values are then compared with those obtained from the 

simulated local fluid pressure. We discuss the accuracy of 

image-based curvature measurements for the calculation 

of capillary pressure and suggest the best method with 

associated errors for capillary pressure estimation. 
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2 Methods 

2.1 The color-gradient lattice Boltzmann method 

The color-gradient LB model proposed by Halliday et 

al. [5] was used. Our LB model was constructed with a 

3D19Q lattice model which consists of a set of 19 discrete 

lattice velocity vectors, ei, in three-dimensional space. We 

defined particle distributions of two immiscible fluids, 

labeled red and blue, as fi
r and fi

b, respectively. The fluid 

density, ρr and ρb, and velocity, u, at position x and time t 

are obtained by: 
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where fi is the total particle distribution given by fi = fi
r+fi

b; 

ρ is the total fluid density given by ρ=ρr+ρb. The lattice 

Boltzmann equation for the total particle distribution is 

written as: 

 ( ) ( ) ( ) iiiii ttftttf  ++=++ ,,, xxex , (4) 

where t denotes the lattice time step which was set to unity 

and Ωi and ϕi are the collision operator and the body force 

term, respectively. For the collision operator, we used the 

Multiple-relaxation-time (MRT) collision operator [6] 

expressed as: 
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where M and S are the transformation matrix and the 

diagonal relaxation matrix, respectively. fi
eq is the 

equilibrium distribution function which is obtained by a 

second order Taylor expansion of the Maxwell-

Boltzmann distribution with respect to the local fluid 

velocity. The location of the interface was tracked using a 

color function ρN defined by: 
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Using the color function, the interfacial tension between 

two fluids was computed as a spatially varying body 

force, F, based on the continuum surface force (CSF) 

model [7] given by: 

 N−=
2

1
F , (7) 

where σ is the interfacial tension and κ is the curvature of 

the interface. This spatially varying body force F was 

incorporated into the lattice Boltzmann equation through 

the body force term ϕi. For the MRT model, this was 

performed by transforming the forcing term proposed by 

Guo et al. [8] using the scheme presented in Yu and Fan 

[9]. After the application of the interfacial tension (F) to 

the particle distributions, the recoloring algorithm 

proposed by Latva-Kokko and Rothman [10]  applied to 

these distributions to ensure phase segregation and 

maintain the interface. This results in a slightly diffusive 

interface whose thickness is about 2 to 3 lattice units. 

Further details of our LB model can be found in Akai et 

al. [11, 12]. The only difference is that we used the MRT 

collision operator, while the single-relaxation-time (SRT) 

collision operator [13] was used in Akai et al. [11]. 

At solid-fluid boundary lattice nodes, a full-way 

bounce back boundary condition was implemented to 

achieve a non-slip boundary condition. In addition, the 

wettability of solid surface was modeled by specifying 

contact angles using the wetting boundary condition 

presented in Akai et al. [11]. This wetting boundary 

condition accurately assigns contact angles for 3D 

arbitrary geometries with smaller spurious currents 

compared to the widely-used fictitious density boundary 

condition [11]. 

2.2 Curvature computation on voxelized images 

There are mainly two approaches to compute 

curvature from voxelized data such as micro-CT images. 

One approach calculates curvatures from the gradient of 

3D float data (e.g., raw or processed grayscale data), 

while the other approach estimates curvature through the 

fitting of a quadratic form locally to a surface extracted 

from voxelized, segmented data [14]. We used the latter 

approach as this has been presented in previous studies 

[14, 1, 15, 4, 3, 16]. 

We started with three-phase segmented label data (oil, 

water and solid) obtained from raw grayscale CT images. 

Using the marching cubes algorithm [17], the oil/water 

interface was extracted from the label data. Since this 

surface had a staircase shape, it had to be smoothed before 

computing curvature. In this study, we compare three 

smoothing methods: Constrained Gaussian smoothing 

(CGS), Laplacian smoothing (LPS) and boundary 

preserving Gaussian smoothing (BPGS). CGS is applied 

when the surface is extracted using the marching cubes 

algorithm. A Gasussian kernel filter with different kernel 

sizes is applied to label data, then isosurface is extracted. 

In this process, the constraint to preserve the location of 

an original label is imposed. 

LPS [18] and BPGS [19] are applied after the 

extraction of the surface with the marching cubes 

algorithm. The extracted surface with a staircase shape is 

modeled as a triangulated surface. Then, the vertices of 

the triangle elements are moved with these smoothing 

methods. In LPS, the position of a vertex is moved to the 

average position of its neighboring vertices. BPGS also 

moves the position of a vertex based on the position of its 

neighboring vertices. A scale factor which determines the 

degree of the movement in one iteration is defined. Two 

consecutive smoothing steps with a positive and negative 

scaling factor are performed in one iteration. This 

smoothing produces a surface which preserves the 

original boundary without shrinkage [19]. The degree of 

the smoothing in LPS and BPGS is controlled by the 

number of iterations. In this study, CGS and BPGS were 

performed with commercial image processing software, 

Avizo, while LPS was performed with Paraview.  



 

After the generation of a smoothed triangulated 

surface, the elemental triangles were fitted by a quadratic 

form: 
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Then, the principal curvature values and directions of 

principal curvature were obtained from the eigenvalues 

and eigenvectors of the fitted quadratic form in Eq. 8 [1]. 

Avizo was used to perform this computation. Users can 

choose the number of neighboring triangles to be used for 

the fitting at the center of a triangle. We used a fixed value 

of 4 neighbors in the following analyses. 

3 Results 

In section 3.1, we provide validation of our direct 

numerical simulations for different grid resolutions. Next, 

in section 3.2, using a single oil droplet test case, we 

investigate the accuracy of the curvature computation 

method described in section 2.2. Here, a smoothed 

interface which was extracted from synthetic segmented 

data based on the simulated phase distribution is used to 

compute curvature, then the resultant values are compared 

with those obtained from the simulated fluid pressure. 

Finally, in section 3.3, the same approach is applied to the 

simulated phase distributions in two realistically complex 

pore structures of a bead pack and Bentheimer sandstone. 

3.1 Validation of the two-phase lattice Boltzmann 

model 

To validate our two-phase lattice Boltzmann model 

and investigate its accuracy as a function of grid 

resolutions, the oil/water interface in a corner of triangular 

pore space was simulated. A 2D pore structure with an 

isosceles triangle shape as shown in Fig. 1 was used. Here, 

the length of Lx and Ly were set to 70 μm. R is the radius 

of curvature of the interface; θ is the contact angle; β is 

the half angle of the corner of the triangle, which is given 

by: tanβ=Lx/2Ly. This pore structure was modeled with 4 

grid sizes of Δ=1.0, 2.0, 3.5 and 5.0 μm.  

The identical density and viscosity of the water and oil 

phases were set to 1,000 kg/m3 and 1 mPa, respectively. 

The interfacial tension and contact angle were set to 18 

mN/m and 45°, respectively. Initially, the lower part of 

the pore structure was filled with oil to a specified oil 

saturation, while the other part at the top corner was filled 

with water. Then, simulations were performed for 50,000 

time steps until they reached equilibrium. 

In this pore geometry, the radius of curvature, R, can 

be analytically derived based on the geometrical 

relationship, which is given by: 
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where Sw is the water saturation and the other parameters 

are shown in Fig 1. This analytically derived radius of 

curvature was used to compare with the simulated radius 

of curvature obtained using the input contact angle of 

θ=45°. Based on the simulated fluid configurations, the 

exact location of the interface corresponding to ρN=0 (see 

Eq. 6) was extracted as shown in Fig. 2. Then, the radius 

of the curvature of this interface was obtained by fitting a 

circle to the interface, since in 2D in equilibrium the 

analytical shape of the interface is a part of a circle. Table 

1 shows the comparison between the radius of curvature 

obtained from the analytical solution and that obtained 

with a circle fit to the simulated interface for different grid 

sizes. The relative error in the radius of curvature is less 

than 3% for these grid resolutions. This suggests that good 

agreement in capillary pressure is also obtained since the 

capillary pressure is directly linked to the radius of 

curvature through Eq. 1.  

 
Fig. 1. A schematic of the isosceles triangle pore used for 

the simulations. 

Lx=70 μm

Ly=70 μm
β

R

θ

 
Fig. 2. Simulated fluid configurations for grid sizes of (a) 

Δ=1.0 µm, (b) Δ =2.0 µm, (c) Δ =3.5 µm and (d) Δ =5.0 

µm. Here, oil and water are shown in red and blue, while 

the exact location of the oil/water interface is shown by the 

white line.  



 

3.2 Curvature of a single oil droplet in triangular pore 

space 

To investigate the curvature computation algorithm 

described in section 2.2, a simple 3D test case was 

performed. A cylindrical pore structure with the length of 

171.5 μm with an isosceles triangular cross-section as in 

the previous test case was used. This pore structure was 

modeled with a grid size of 3.5 μm. The same fluid 

properties and contact angle as in the previous section 

were used. Initially, oil was placed in the central region of 

the pore space as shown in Fig. 3a. Then, simulations were 

performed for 50,000 time steps until they formed a single 

oil droplet after equilibrium (Fig. 3b). 

 

Two types of the oil/water interface were prepared 

based on the simulation results: a “simulated interface” 

and a “smoothed interface”. The simulated interface was 

obtained by extracting the contour line of the color 

function ρN=0. This surface originally had a sub-

resolution smoothness. The other surface, the smoothed 

interface, was obtained from synthetic voxelized label 

data. The simulated distribution of the color function was 

segmented into label data with the threshold of ρN=0, then 

the oil/water interface was extracted using the marching 

cubes algorithm. This surface has a staircase shape due to 

the shape of a voxelized grid system. Therefore, it needs 

to be smoothed before computing curvature. As discussed 

in section 2.2, three smoothing methods were applied: 

Constrained Gaussian smoothing (CGS), Laplacian 

smoothing (LPS) and boundary preserving Gaussian 

smoothing (BPGS). The parameters used for the 

smoothing are summarized in Table 2. 

Based on the simulated fluid pressure, the capillary 

pressure was obtained using: 
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where Po
avg and Pw

avg are the average fluid pressure in the 

oil and water phases, respectively; No and Nw are the 

number of grid blocks having ρN>0.9 and ρN<−0.9, 

respectively; P is the simulated fluid pressure in each grid 

block. Here, to exclude the interface region, we computed 

an average pressure for each phase for |ρN|>0.9. Then, 

Pc
sim was converted to the simulated mean curvature using 

Eq. 1. We refer to this mean curvature as the fluid pressure 

derived mean curvature, κm
P. 

Fig. 4 shows the oil/water interface after smoothing, 

colored by computed mean curvature. For all of the 

smoothed surfaces, we see a variation in the computed 

mean curvature, although the correct mean curvature 

should give a uniform value as shown in the curvature 

computed on the simulated interface, Fig. 4(j), because 

the oil droplet is in capillary equilibrium. Furthermore, we 

see errors around the edge of the interface (close to the 

three-phase contact lines) for all of the smoothed 

interfaces, Fig. 4(a)~(i). Therefore, we decided to discard 

the data points whose distance from solid surface is fewer 

than 3 voxels. This 3 voxels distance cutoff was used for 

all of the following analyses. Table 3 summarizes the 

average and standard deviation of the computed mean 

curvature and the relative difference to the fluid pressure 

derived mean curvature, κm
P =0.133 voxel-1 for the 

smoothing level 2 as shown in Fig. 4(b), (e), (h). We note 

that Li et al. [3] proposed that in addition to the distance 

cutoff, taking an average weighted by the distance from 

the solid surface further improves the accuracy of 

curvature measurement using synthetic test cases of the 

interface in a cylindrical structure with a circular-cross 

section; however, taking a distance-weighted average did 

not improve the estimation of curvature in our cases as we 

can conclude from the overestimated curvature values 

observed in the central region of the oil droplet in Fig. 4(a) 

~ (i). 

In fact, the optimum smoothing method and its level 

of smoothing is dependent on the shape and the size of an 

object. Therefore, here, we only provide the qualitative 

features of the three smoothing methods. CGS preserves 

the shape of an object, but significant smoothing cannot 

be applied even with increasing the kernel size, because 

the resultant surface is constrained by the original voxel 

data. As a result, CGS tends to give a wider range of 

variation. LPS can apply significant smoothing by 

Table 1. Comparison between the radius of curvature 

obtained from the analytical solution and that obtained with 

a circle fit to the simulated interface for different grid sizes. 

   analytical simulated  

grid size Sw R R %Diff. 

μm % μm μm % 

1.0 35.9% 70.3 70.9 0.9% 

2.0 35.6% 69.9 68.2 -2.4% 

3.5 36.0% 70.3 68.3 -3.0% 

5.0 32.7% 67.0 65.9 -1.7% 

 

 
Fig.  3. An oil droplet in a 3D triangular pore space. (a) 

Initial condition. (b) Equilibrium condition. Here, solid is 

shown in transparent green and the oil phase is shown in 

red. 

Table 2. Parameters used for Constrained Gaussian 

smoothing (CGS), Laplacian smoothing (LPS) and boundary 

preserving Gaussian smoothing (BPGS). 

smoothing parameters smoothing level 

method   level 1 level 2 level 3 

CGS kernel size 1 3 9 

LPS number of iterations 200 600 1800 

BPGS number of iterations 50 150 450 

 



 

increasing the number of iterations; however, this could 

change the shape of the interface as shown in a top part of 

the interface in Fig. 4(f) where we see the bending of the 

interface towards the opposite direction. This is caused by 

the propagation of errors in the three-phase contact line 

through many iterations. However, combining with the 

distance cutoff, this erroneous part can be effectively 

removed while preserving a well smoothed surface in the 

middle of the interface. BPGS gives the similar results to 

LPS, while better keeping the shape of an object 

compared to LPS. 

For the simulated interface which was directly 

obtained from the simulated color function without any 

smoothing, the computed curvature showed good 

agreement with the fluid pressure derived curvature with 

a smaller standard deviation (Table 3). Moreover, since 

this surface did not show the errors close to the three-

phase contact line, the average and standard deviation 

without the distance cutoff also gave similar values, i.e., 

the average of 0.132 voxel-1 and standard deviation of 

3.99×10-3 voxel-1. 

3.3 Local capillary pressure estimation for complex 

porous media 

Two realistically complex pore structures were used: 

a synthetic bead pack pore structure and micro-CT images 

of Bentheimer sandstone. For these structures, simulation 

domains were composed of 256×256×256 voxels with a 

grid size of 3.56 µm as shown in Fig 5. For the analysis of 

the simulation results, the pore structures were divided 

into pore regions using the separate pore algorithm in 

Avizo, resulting in 402 and 272 pore regions for the bead 

pack and Bentheimer sandstone, respectively. The mean 

pore radius which accounts for 50% of the pore volume 

was 37 μm and 30 μm for the beadpack and Bentheimer 

sandstone, respectively.  

The identical density and viscosity of water and oil 

phase were set to 1,000 kg/m3 and 1 mPa, respectively. 

The interfacial tension and contact angle were set to 25 

mN/m and 45°, respectively. All 6 faces of the cubic 

simulation domain were covered with solid voxels, i.e., a 

no-slip boundary condition was applied to all 6 faces. 

Initially, 50% of oil and 50% of water were randomly 

placed in pore voxels, then the simulations were 

performed with no external force for 250,000 time steps 

(corresponding to 0.1 seconds) until they reached 

equilibrium conditions. 

Fig. 6 shows the simulated phase distribution at the 

equilibrium condition. Similar to the analysis presented in 

the previous section, the simulated interface and the 

smoothed interface were prepared from the simulation 

results. Curvature computation was performed on these 

surfaces. Figs. 7 and 8 show the histogram of the 

computed curvature for the bead pack and Bentheimer 

sandstone, respectively. The fluid pressure derived mean 

 
Fig. 4. The oil/water interface after the application of the 

several smoothing methods with different smoothing 

levels. CGS with a kernel size of (a) 1 voxel, (b) 3 voxels 

and (c) 9 voxels. LPS with (d) 200 iterations, (e) 600 

iterations and (f) 1800 iterations. BPGS with (g) 50 

iterations, (h) 150 iterations and (i) 450 iterations. (j) The 

simulated interface. Here, the surface is colored by the 

value of mean curvature. The correct surface should present 

uniform mean curvature as seen in the simulated interface 

since the droplet is in capillary equilibrium for which the 

capillary pressure is uniform. 

Table 3. Voxel based interfaces with the smoothing level 

2 (see Table 2) and a distance cutoff of 3 voxels. Here, the 

relative difference was computed to the fluid pressure 

derived mean curvature of κm
P=0.133 voxel-1. 

surface computed curvature relative 

 avg. std. difference 

  [voxel-1] [voxel-1] [%] 

simulated interface 0.134 3.23 × 10-3 0.7% 

smoothed with CGS 0.149 3.23 × 10-2 12.1% 

smoothed with LPS 0.132 2.40 × 10-2 -0.1% 

smoothed with BPGS 0.139 2.68 × 10-2 5.0% 

 

 
Fig. 5. Pore structures of (a) the bead pack and (b) the 

Bentheimer sandstone. 



 

curvature, κm
P, obtained with Eq. 10 is also shown by the 

vertical line. In both figures, the histograms obtained from 

the smoothed interface without and with the distance 

cutoff are shown in (a) and (b), while those obtained from 

the simulated interface without and with the distance 

cutoff are shown in (c) and (d). The average and standard 

deviation of these distributions are summarized in Table 

4 for the bead pack and Table 5 for the Bentheimer 

sandstone. 

Here, we discuss the following two key observations. 

First, the computed curvatures obtained with the 

smoothed interface show the wide range of the 

distribution when the cutoff is not applied, while the 

curvatures obtained with the simulated interface show a 

much narrower range. For the histograms without the 

cutoff, the difference between the distributions obtained 

with the smoothed interfaces and the simulated interface 

suggests that there are many erroneous values in curvature 

computation on the smoothed surfaces. The histograms 

obtained with CGS appeared to have the most similar 

distribution to that obtained with the simulated interface. 

However, as shown in Table 4 and 5, their average values 

are much higher than that obtained from the fluid pressure 

and simulated interface because of the long tails of their 

distribution toward values higher than 0.3, which are not 

shown in Figs. 7 and 8. Second, after the application of 

the distance cutoff, all the histograms obtained with the 

smoothed interface become similar to that obtained with 

the simulated interface. However, in both the smoothed 

and the simulated interface, the data points of high 

curvature values have been lost. This is because the 

distance cutoff removes the data points of not only the 

edges of the interface but also the entire parts of the 

interface in small pores, which tend to give a high 

curvature value. Although a high curvature value is not 

captured when the distance cutoff is applied, the 

smoothed interface seems to provide a good estimate of 

local mean curvature values of the interface. This will be 

 
Fig. 6. The simulated phase distribution of (a) the bead pack pore structure and (b) the Bentheimer sandstone pore structure. Here, 

only oil is shown in red, while water and solid are transparent. The extracted interface based on the simulation results for (c) the 

bead pack and (d) the Bentheimer sandstone. This was performed extracting the contour line of ρN=0. 

 
Fig. 7. The histogram of computed mean curvature for the 

bead pack. The histograms computed on the smoothed 

interface without and with the distance cutoff (a and b). The 

histograms computed on the simulated interface without 

and with the distance cutoff (c and d). The fluid pressure 

derived mean curvature obtained with Eq. 10 is also shown 

by the vertical line. 

 
Fig. 8. The histogram of computed mean curvature for the 

Bentheimer sandstone. The histograms computed on the 

smoothed interface without and with the distance cutoff (a 

and b). The histograms computed on the simulated 

interface without and with the distance cutoff (c and d). The 

fluid pressure derived mean curvature obtained with Eq. 10 

is also shown by the vertical line. 



 

further discussed in the following analysis. Among the 

three smoothing methods, when the cutoff is applied, LPS 

gave the closest average value of the mean curvature to 

that obtained from the simulated interface with the 

smallest standard deviation.    
To further investigate the accuracy of curvature 

computation on the interface, the comparison was made 

on a pore-by-pore basis. First, we computed local 

capillary pressure applying Eq. 10 for each pore region. 

This local capillary pressure was converted to the mean 

curvature for each pore region using Eq. 1. Next, we also 

obtained the mean curvature for each pore region by 

taking the average of the computed curvature values on 

the interfaces in that pore region. Figs. 9 and 10 show the 

comparison between the dimensionless mean curvature 

obtained from the simulated fluid pressure and that 

obtained from the computed curvature on the interface for 

the bead pack and Bentheimer sandstone, respectively. In 

both, the curvature computed on the simulated interfaces 

gave consistent values with those obtained from the fluid 

pressure. This means that when the interface is reasonably 

smooth, the curvature computation gives an accurate 

estimation of local capillary pressure. For the curvature 

computed on the smoothed interface, CGS shows highly 

overestimated curvature values for some pore regions, 

while LPS and BPGS estimate curvature within a range of 

about ±20% difference from the curvatures obtained with 

the fluid pressure for the mean curvature smaller than 

Table 4. The average and standard deviation of the 

distribution of computed mean curvature for the bead pack 

shown in Fig. 7. 

    computed curvature 

  avg. std. 

    [voxel-1] [voxel-1] 

simulated fluid pressure 7.40 × 10-2 N/A 

without the cutoff   

 simulated interface 7.36 × 10-2 4.25 × 10-2 

 smoothed with CGS 11.5 × 10-2 16.1 × 10-2 

 smoothed with LPS 3.06 × 10-2 5.63 × 10-2 

  smoothed with BPGS 4.54 × 10-2 6.87 × 10-2 

with the cutoff   

 simulated interface 7.12 × 10-2 1.22 × 10-2 

 smoothed with CGS 8.02 × 10-2 8.43 × 10-2 

 smoothed with LPS 7.01 × 10-2 2.03 × 10-2 

  smoothed with BPGS 7.62 × 10-2 2.54 × 10-2 

 

Table 5. The average and standard deviation of the 

distribution of computed mean curvature for Bentheimer 

sandstone shown in Fig. 8. 

    computed curvature 

  avg. std. 

    [voxel-1] [voxel-1] 

simulated fluid pressure 9.73 × 10-2 N/A 

without the cutoff   

 simulated interface 11.1 × 10-2 8.20 × 10-2 

 smoothed with CGS 19.3 × 10-2 27.0 × 10-2 

 smoothed with LPS 4.24 × 10-2 7.64 × 10-2 

  smoothed with BPGS 8.51 × 10-2 10.8 × 10-2 

with the cutoff   

 simulated interface 7.17 × 10-2 2.51 × 10-2 

 smoothed with CGS 8.16 × 10-2 8.48 × 10-2 

 smoothed with LPS 7.45 × 10-2 3.12 × 10-2 

  smoothed with BPGS 7.81 × 10-2 3.60 × 10-2 

 

 
Fig. 10. Comparison of local mean curvature for the 

Bentheimer sandstone on pore-by-pore basis. X-axis shows 

the dimensionless mean curvature obtained from the 

simulated fluid pressure, while the Y -axis shows that 

computed on the interface. A unit slope indicating perfect 

agreement in these values is shown by a black solid line, 

while, ±20% difference is shown by black dotted lines. 

 
Fig. 9. Comparison of local mean curvature for the bead 

pack on pore-by-pore basis. X-axis shows the 

dimensionless mean curvature obtained from the simulated 

fluid pressure, while the Y -axis shows that computed on 

the interface. A unit slope indicating perfect agreement in 

these values is shown by a black solid line, while, ±20% 

difference is shown by black dotted lines. 



 

about 0.15 voxel-1. Therefore, with LPS or BPGS 

incorporating the distance cutoff of 3 voxels, local 

capillary pressure can be measured with a ±20% error up 

to 0.15 voxel-1 at this resolution.   

4 Conclusions 

Direct numerical simulations were conducted to 

obtain oil and water phase distribution, the exact location 

of the oil/water interface and local fluid pressure. From 

the simulation results, two types of the oil/water interface 

were generated. One is a simulated interface which has a 

sub-resolution smoothness, while the other is a smoothed 

interface. The smoothed interfaces were generated by 

applying three types of smoothing methods to a staircase 

shape surface extracted from synthetic segmented data 

based on the simulated phase distribution. Then, curvature 

computation was performed on these surfaces. The 

resultant mean curvature value from these surfaces was 

compared with that obtained from the simulated fluid 

pressure. This was performed to find the best way to 

extract accurate curvature measurement, and to quantify 

the likely uncertainties. 

First, we tested our approach using a single oil droplet 

in triangular pore space. Computed curvature values on 

the simulated interface showed a narrow distribution 

whose average value was consistent with that obtained 

from the fluid pressure. This means that when the surface 

is sufficiently smooth, the fitting of a quadratic form 

equation to the surface properly computes local 

curvatures. On the other hand, computed curvature values 

on the smoothed interface showed a wide distribution with 

erroneous values close to the three-phase contact lines. 

Therefore, we discarded values whose distance from solid 

surface was fewer than 3 voxels. After the application of 

the distance cutoff, the average of computed mean 

curvature values became closer to that obtained from the 

fluid pressure. However, their standard deviation was on 

the order of 10-2 voxel-1 against the mean curvature value 

of 0.133 voxel-1, which was 10 times higher than that 

obtained from the simulated interface. These deviated 

values were caused by error, since an oil droplet in 

capillary equilibrium should give a uniform value of mean 

curvature. 

Next, realistically complex pore structures of a bead 

pack and Bentheimer sandstone were used to simulate oil 

droplets in capillary equilibrium. When the distance 

cutoff was not applied, curvature computed on the 

simulated interface gave an average value of mean 

curvature consistent with that obtained from the fluid 

pressure for both the bead pack and Bentheimer 

sandstone. However, when the distance cutoff was 

applied, the average value became lower than that from 

the fluid pressure. This is because the distance cutoff 

removes the data points of not only the edges of the 

interface but also the entire parts of the interface in small 

pores, which tend to give a high curvature value. For the 

smoothed interface, the distributions obtained without the 

cutoff were quite different from that obtained from the 

simulated interface. Many negative values of computed 

mean curvatures suggest significant errors in these cases. 

After the application of the distance cutoff, the 

distribution became closer to that obtained with the 

simulated interface. 

Finally, we compared computed mean curvature on a 

pore-by-pore basis. As opposed to the test case performed 

on the single oil droplet, oil droplets with different mean 

curvature values corresponding to different pore sizes can 

be obtained in these simulations. Therefore, we need to 

investigate whether the range of computed mean 

curvature is caused by error or it reflects a variation in 

local capillary pressure. Good agreement between mean 

curvature obtained from the fluid pressure and that 

computed from the simulated surface for each pore region 

suggested that the range of distribution observed in the 

simulated surface properly captures variation in local 

capillary pressure. For the smoothed interface with the 

cutoff, LPS and BPGS estimated curvature within a range 

of about ±20% difference from the curvatures obtained 

with the fluid pressure for mean curvatures smaller than 

about 0.15 voxel-1, while CGS showed highly 

overestimated curvature values for some pore regions. 

In conclusion, the application of the distance cutoff is 

necessary to remove the errors close to the three-phase 

contact line. Among the three tested smoothing methods, 

LPS appeared to be the best method since it gave the 

closest average of mean curvature values to that obtained 

from the simulated interface with the smallest standard 

deviation. In addition, it gave good estimates of the local 

mean curvature for each pore with a ±20% error up to 0.15 

voxel-1 at this resolution. 

Currently, we are using the similar approach to 

quantify the accuracy of curvature computation for 

drainage and imbibition events on the bead pack and 

Bentheimer sandstone. This will be discussed in a future 

publication. 
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