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Abstract. Dielectric measurements of reservoir rocks are used to estimate important petrophysical properties 
such as water filled porosity and pore surface textures. However, complex dielectric polarisation processes 
that occur in rocks are strongly dependent on frequency, making physically meaningful interpretation of 
broadband dielectric data difficult. Here we demonstrate the application of Tikhonov regularisation methods 
to compute dielectric relaxation time distributions from broadband (40Hz to 110MHz) dielectric data for a 
shale sample at varying partial saturation. Furthermore, via the Kramers-Kronig relation the contribution from 
in phase conduction currents to the imaginary component of the dielectric response was quantified. The 
evolution of dielectric polarisation processes with increasing moisture content was analysed directly from 
changes in relaxation time distributions. It was found that the dominant polarisation mechanism up to a critical 
partial saturation occurred exclusively in the electrical double layer (EDL). Above this critical partial 
saturation electro-diffusion mechanisms acting between the diffuse layer and the bulk electrolyte controlled 
the low frequency response.   This work provides valuable insight into dielectric polarisation mechanisms in 
shales, and demonstrates such measurements are sensitive to EDL properties and electro-diffusion length 
scales that are relevant to characterising pore properties in shales. 

1 Introduction  

The complex broadband (Hz to GHz) dielectric response 
of moist rocks arises from a range of polarisation 
processes related to individual molecules, interfacial 
charge phenomena and electrochemical potentials [1], [2]. 
Several authors have highlighted the potential of using 
electrical relaxation times to extract important hydraulic 
properties of rocks such as permeability [3], [4], textural 
properties of pore surfaces [5] and pore and pore throat 
sizes [6], [7]. However, despite many experimental 
studies [8] and theoretical considerations [9], a complete 
model for broadband dielectric polarisation in permeable 
rocks is still yet to be realised [10]. A limiting factor in 
this lack of physical insight is the widespread application 
of empirical models that are based on dielectric relaxation 
for a single dipole [11]–[13]. The alternative, and more 
physically appropriate approach, of fitting broadband 
dielectric dispersion data with a continuous distribution of 
relaxation times [14]–[16], of which there are only few 
examples in the literature that involved spectral induced 
polarisation measurements [17]–[19].  

Here we demonstrate the successful application of 
Tikhonov regularisation methods to compute continuous 
distributions of dielectric relaxation times directly from 

broadband (40 Hz – 110 MHz) frequency domain data for 
a shale rock at varied partial saturation. The evolution of 
dielectric relaxation distributions was studied as a 
function of water content, with measurements of 6 
incremental saturation states ranging from dry to fully 
saturated. Analysis of the relaxation time distributions 
obtained as moisture content increased reveals new 
insights into the consequent changes in EDL polarisation 
processes. Furthermore, we attempt to quantify the 
contribution of in-phase conduction currents by using the 
inverted relaxation time distribution models and the 
Kramers-Kronig relation to link the solutions obtained for 
the real and imaginary components of the dielectric 
response.  

2 Background and Theory  

2.1 Effective Electrical Properties 

In an applied electrical field (𝐸𝐸�⃗ ), the effective current 
density (𝐽𝐽𝐸𝐸���⃗ ) of a homogenous material is composed of two 
parts: conduction currents (𝐽𝐽𝐶𝐶���⃗ ) and displacement currents 
(𝐽𝐽𝐷𝐷���⃗ ), 
 



 

𝐽𝐽𝐸𝐸���⃗ = 𝐽𝐽𝐶𝐶���⃗ + 𝐽𝐽𝐷𝐷���⃗ (1) 
where, 

𝐽𝐽𝐶𝐶���⃗ = 𝜎𝜎𝐸𝐸�⃗ (2) 
and, 

𝐽𝐽𝐷𝐷���⃗ = 𝜀𝜀
𝜕𝜕𝐸𝐸�⃗
𝜕𝜕𝜕𝜕  . (3) 

Here 𝜎𝜎  is the electrical conductivity and 𝜀𝜀  the 
dielectric permittivity [20]. Conduction currents are 
defined as an ordered translation of free charge, which for 
rocks corresponds primarily to the translation of charge 
carrying ions present in fluids within the pore space. The 
magnitude of conduction is related to the charge, charge 
density and drift velocity [21] of the free charges being 
translated. Displacement currents relate to the time 
dependent polarisation processes of bound charges [22], 
which can occur from an atomic scale to macro 
assemblages of molecules. The extent of electrical 
polarisation is related to the density of effective dipoles, 
their polarizability and mobility.  

In a time varying electrical field (𝐸𝐸�⃗ ) with angular 
frequency 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 , the relationship between the 
complex frequency dependence of conductance and 
displacement currents can be derived from Maxwell’s 
equations [22], 

𝐽𝐽𝐸𝐸���⃗ (𝜔𝜔) = 𝜎𝜎∗(𝜔𝜔)𝐸𝐸�⃗ =  𝜀𝜀∗(𝜔𝜔)
𝜕𝜕𝐸𝐸�⃗
𝜕𝜕𝜕𝜕 (4) 

where, 

𝜀𝜀(𝜔𝜔)
∗ = �𝜀𝜀(𝜔𝜔)

′ +
𝜎𝜎(𝜔𝜔)

"

𝜔𝜔𝜀𝜀0
� − 𝑖𝑖 �𝜀𝜀(𝜔𝜔)

" +
𝜎𝜎(𝜔𝜔)
′

𝜔𝜔𝜀𝜀0
� (5) 

and 

𝜎𝜎(𝜔𝜔)
∗ = �𝜎𝜎(𝜔𝜔)

′ + 𝜀𝜀(𝜔𝜔)
" 𝜔𝜔� + 𝑖𝑖�𝜎𝜎(𝜔𝜔)

" + 𝜀𝜀(𝜔𝜔)
′ 𝜔𝜔� (6) 

Here the effective dielectric permittivity (𝜀𝜀(𝜔𝜔)
∗ ) The 

imaginary and real components of the permittivity (𝜀𝜀(𝜔𝜔)
" ) 

and conductivity (𝜎𝜎(𝜔𝜔)
′ ) relate to ohmic conductance or the 

translation of charges, respectively, while real 
permittivity ( 𝜀𝜀(𝜔𝜔)

′ ) and imaginary conductivity (𝜎𝜎(𝜔𝜔)
" ) 

components relate to the capacitive susceptance or the 
displacement of charges [20]. The measured electrical 
quantities 𝜎𝜎∗(𝜔𝜔)  and 𝜀𝜀∗(𝜔𝜔)  are in fact composites of 
complex conduction and polarisation processes. It is also 
useful to normalise 𝜀𝜀∗(𝜔𝜔) by the dielectric permittivity of 
free space 𝜀𝜀0  and report the relative permittivities 𝜀𝜀𝑟𝑟 =
𝜀𝜀∗/𝜀𝜀0. 

2.2 Dielectric Relaxation Time 

For a single dipole, the frequency dependent complex 
dielectric permittivity, ε(ω)

∗ ,  is given by the Debye model.  

ε(ω)
∗ − ε∞ =  

Δε
1 + iωτ (7) 

 Here τ  is the characteristic relaxation time, ε∞  is 
dielectric permittivity at the high frequency limit and Δε 
is the difference in permittivity between the high and low 
frequency limits. While the Debye model eloquently 
describes the response of a single dipole, heterogenous 
rocks represent complex and non-ideal dielectric systems 
where multiple dielectric processes occur because of 
strong surface-electrolyte charge interactions, highly 
varied compositions and complex pore structures. To 
better represent the ensemble of relaxation processes that 
occur in many complex dielectrics, the most widely used 
approach has been to empirically alter the exponential 
form of the Debye model by broadening [11] or 
combining broadening with functional asymmetry [13]. 
The Havriliak-Negami (HN) adaptation is one such model 
and takes the form, 

ε(ω)
∗ −ε∞ =  

Δε
(1 + (iωτ)α)β

(8) 

 where both α and β are empirical fitting parameters 
ranging between 0 and 1. Note that if β is set to 1 the HN 
equation reduces to the Cole-Cole equation [11], and if α 
is set to one it reduces to the Cole Davidson equation [12]. 
Although capable of fitting some complex dielectric data, 
the relationship of the values obtained for these empirical 
fitting parameters with physical processes is ambiguous. 
Furthermore, for broadband dielectric data covering 
frequency ranges that span many orders of magnitude, a 
combination of several such functions are usually 
required to fit the experimental data obtained, requiring a 
priori assumptions about the number of relaxation 
processes and approximate relaxation times[23]–[25]. 

 Alternatively, broadband dielectric dispersion data 
can be described by a continuous distribution of Debye-
like processes,  

ε(ω)
∗ − ε∞
Δε = �

g(τ)
1 + iωτ dτ

τmax

τmin

(9) 

 where g(τ) represents the probability distribution of 
characteristic relaxation times. Analysis of the dielectric 
response data using this form provides distinct benefits 
over parametrised methods as dispersion processes can be 
assessed directly from relaxation time distributions. 
Numerically, however, this analysis is more difficult as 
the solution to the integral equation is ill-conditioned (i.e., 
many of the solutions for g(τ) are linearly dependent 
and small changes in the signal can disproportionately 
impact the solution). One way to overcome the numerical 
problems associated with the ill-conditioned nature of the 
integral equation and to manage contributions of 
experimental noise is through the use regularisation 
methods, as developed for example by Tikhonov [26].  

 



 

2.3 Dielectric Polarisation in Complex Materials 

Dielectric dispersion observed in moist rocks arises from 
several polarisation mechanisms of effective dipoles that 
vary in mobility and size. At high electric field 
frequencies (>1 GHz) only small mobile dipoles, which 
typically correspond to individual molecules, and atomic 
and ionic structures can be polarised. As frequency is 
reduced, less mobile and larger effective dipoles related 
to restricted molecules, assemblages of molecules, and 
surface effects start contributing to the measured 
dielectric permittivity, as do electro-diffusion processes. 
Loewer et al. [23] provides a good overview and graphical 
representation of these polarisation mechanisms and their 
relationship to the frequency of applied electric field.  
Numerous models have been developed to describe 
electrical processes in rocks, which can be broadly 
divided into those derived from bulk properties [27]–[31] 
and those that incorporate surface related mechanisms 
(i.e. conduction and polarisation of surface charges) [1], 
[9], [32], [33].  

Experimentally, Maxwell-Wagner-Bruggeman-
Hanai (MWBH) theories have been shown to successfully 
describe experimental results well for most moist rocks at 
frequencies above 10 MHz [34]. However, at frequencies 
lower than this, contributions from surface processes to 
conduction and displacement currents can be much 
stronger than those accounted for by bulk effect models 
alone [35].  

Surface polarisation and conduction models attempt 
to account for charged ions and effective dipoles, whose 
behaviour and assembled structure is defined by their 
interactions with an active surface. When a solid, charged 
surface is in contact with an ion-containing solution, an 
electrical double layer (EDL) will form in the vicinity of 
that surface. The EDL structure consists of tightly bound, 
immobile inner layer of ions with the opposite charge to 
that of the surface known as the Stern layer. Beyond the 
Stern layer, an ionic atmosphere called the diffuse layer is 
formed by ions of both charges, with a slightly higher 
concentration of those with the charge opposite to the 
surface [36].   

 O’Konski (1960) considered polarisation of charge 
carriers within an EDL moving tangentially along the 
surface of a spherical particle with radius a. In this 
approach, the surface conductivity (σs) is considered to 
account for the mobility of charges in the EDL and 
displacement normal to the surface is not permitted. The 
relaxation time (τs) for establishing polarisation was 
hence derived, 

𝜏𝜏𝑠𝑠 =
𝑎𝑎(𝜀𝜀2 + 2𝜀𝜀1)

8𝜋𝜋𝜎𝜎𝑠𝑠
(10) 

where ε1 and ε2 are the dielectric permittivities in the 
low frequency limit corresponding to the electrolyte and 

particle respectively. Schwarz (1962) argued that 
O’Konski’s approach of expanding MW theory to include 
ohmic surface conductance around the particle was not 
enough to account for experimental observations, with 
dielectric permittivities many orders of magnitude higher 
than their constituents found for some composite 
materials.  Instead, the relaxation time for polarisation in 
the EDL should be considered as controlled by the 
diffusion of surface bound ions (Ds) [37],  

𝜏𝜏𝑠𝑠 =
𝑎𝑎2

2𝐷𝐷𝑠𝑠
(11) 

Comparisons of such models to experiments with 
suspensions of polystyrene spheres in an electrolyte 
solution showed improved agreement [32]. However, for 
polarisation in an time-dependent field, the surface ion 
diffusion interpretation is only valid in the limit of small 
particle size; for large particles the observed relaxation 
time is better described by the surface conductivity 
description [35]. Models which define the polarisation as 
occurring exclusively in the EDL (i.e. no interaction with 
the bulk electrolyte) are sometimes term closed EDL 
models [35]. Although applicable to a wide range of 
materials, these fixed layer models fail to capture the very 
large low frequency dielectric response observed in, for 
example, colloidal systems [38] and clay rich sands [39].  

The boundary conditions of the closed double layer 
models can be altered to allow for diffusional flux of 
counter and co-ions from the EDL to the bulk electrolyte 
[37], [40], with the resulting formalism sometimes 
referred to as an open double layer model Figure 1. The 
driving force for this flux is a result of electrochemical 
potentials that arise between the bulk electrolyte and the 
distorted charge distribution of the polarised electrical 
double layer. These diffusive fluxes of ions can occur out 
of phase with the applied field and result in very large 
displacement currents, which is consistent with many 
experimental observations [39]. The characteristic 
relaxation times for these systems are also controlled by 
diffusion; however, in this case it is the bulk diffusion of 
counter and co-ions across a length scale a, which reflects 
the compositional front associated with the 
electrochemical potential, 

𝜏𝜏𝐷𝐷 =
𝑎𝑎2

2𝐷𝐷 (12) 

The exact dielectric polarisation mechanisms that 
occur in clay rich rocks are complex and likely to be a 
convolution of multiple different phenomena dependent 
on various length and time scales. Having a better 
fundamental understanding of the different polarisation 
process enables the interpretation of observed relaxation 
times in terms of various length scales. This in turn may 
lead to more accurate applications of dielectric relaxation 
time models to determine various key properties of rock 
samples that are otherwise difficult to determine.  
 



 

 

 
Figure 1. schematic of open and closed EDL polarisation 
processes. Arrows indicate charged ion transfer between 
positive and negative domains of effective dipoles. 

3 Method 

3.1 Samples 

This study involved an American shale sample, which 
after acquisition from a well the sample was air dried, and 
thus still contained remnant formation salt. Dielectric 
measurements were made on a thin disc 8 mm thick and 
25.4 mm in diameter which was cut from the original 
plug. The flat surfaces of the samples were cut with a 
tolerance of ±0.08 mm.  

3.2 Saturation Protocol The sample was measured at 6 
saturation states ranging from dry to 100% saturated. 
First, the ‘as received’ shale sample was left in four 
different RH environments allowing for it to reach several 
different partial saturation states. Specifically, RH 
conditions of 99%, 75%, 43% and 23% were generated by 
placing saturated salt solutions of potassium sulfate, 
sodium chloride, potassium carbonate and potassium 
acetate, respectively, into temperature-controlled glass 
desiccators. The sample was removed periodically for 
weighing and equilibrium saturation was determined 
when the mass had stabilised to within approximately ± 
0.0005 g; this process typically took 6 weeks. The effect 
of exposing shale to different RH environments was to 
vary its saturation state by the addition of pure H2O 
vapour, which effectively diluted or concentrated any 
electrolytes in the pore space.  

 Following this, the samples were placed under 
vacuum for 48 hrs and then pressure saturated (150 bar) 
with 1% NaCl solution, after which they were left for a 

further 48 hrs at pressure. Finally, the samples were dried 
in a vacuum oven at 105˚C for 3 weeks.  

3.3 Dielectric Measurements 

To remove the effects of ohmic conduction and electrode 
polarisation we made measurements with a regenerated 
cellulose sheet that acted as a blocking film in place 
between the sample and electrodes [41]. Repeat 
measurements were also made without the blocking film 
in place to record the equivalent conductivity. After each 
measurement the sample was rotated 180° and a repeat 
measurement was made, with the average of the two 
measurement reported here. Hence, a total of 24 
individual test were conducted on this sample over the 
course of the experimental procedure. 

 At each saturation state, capacitance and resistance 
measurements were made using the three terminal parallel 
plate method, which includes the addition of a guarding 
electrode that minimises stray edge effects. Samples were 
placed in between the two platens (20 mm sensing 
diameter) with a small compression force applied using a 
manual hydraulic pump to ensure a firm surface contact. 
The dielectric measurement cell was connected to an 
Agilent 4294A impedance analyser which has a basic 
impedance accuracy of ±0.08%  and covers a broad 
frequency range of 40 Hz to 100 MHz. Parasitic 
capacitance contributions associated with the 
transmission lines and terminals were subtracted from the 
experimental data by conducting calibration 
measurements at the beginning of each experimental run.  

3.4 Regularisation   

To solve for 𝑔𝑔(𝜏𝜏) from logarithmically spaced data we 
first introduce the following normalization condition, 

� 𝑔𝑔(𝜏𝜏)𝑑𝑑(ln 𝜏𝜏)
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

= 1 (16) 

 Then, through the Kramers-Kronig relation, the 
measured real and imaginary components of the dielectric 
permittivity can be represented by a calculation based on 
a specified 𝑔𝑔(𝜏𝜏), 

𝜀𝜀(𝜔𝜔)
′ = 𝜀𝜀∞ + (𝛥𝛥𝜀𝜀)�

𝑔𝑔(𝜏𝜏)
1 + 𝜔𝜔2𝜏𝜏2 𝑑𝑑(𝑙𝑙𝑙𝑙𝜏𝜏)

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑠𝑠𝑛𝑛(𝜔𝜔) (17) 

𝜀𝜀(𝜔𝜔)
" = (𝛥𝛥𝜀𝜀)�

𝑔𝑔(𝜏𝜏)𝜔𝜔𝜏𝜏
1 + 𝜔𝜔2𝜏𝜏2 𝑑𝑑

(𝑙𝑙𝑙𝑙𝜏𝜏) + 𝑠𝑠𝑛𝑛(𝜔𝜔)
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

(18) 

 Here 𝑠𝑠𝑛𝑛(𝜔𝜔)  is the noise associated with the 
experimental measurement. This more mathematically 
complex representation is a Fredholm integral of the first 
kind. The task then becomes to solve the inverse problem 
to determine 𝑔𝑔(𝜏𝜏) from the measured complex dielectric 
permittivity. Regularisation methods, such as minimizing 
the residual norm, can be used to solve these Fredholm 
integrals for approximate solutions but discrete noisy 
signals can lead to unrealistic, highly oscillatory 
solutions. A well-established method for generating 
robust solutions for noisy data is Tikhonov regularisation 



 

[26] where the minimisation quantity, H, is defined as 
[42], 

𝐻𝐻(𝛼𝛼) = ��𝜀𝜀𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜀𝜀𝑗𝑗𝑒𝑒𝑠𝑠𝑒𝑒�

2 + 𝛼𝛼‖𝑔𝑔(𝜏𝜏)‖
𝑗𝑗

(19) 

 where 𝜀𝜀𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒  are the experimental data, 𝜀𝜀𝑗𝑗𝑒𝑒𝑠𝑠𝑒𝑒  is the 

estimated solution and 𝛼𝛼‖𝑔𝑔(𝜏𝜏)‖ is the penalty term which 
balances the impact of noise to the fidelity of the final 
answer. The summation extends over both the real and 
imaginary components (i.e. contains 2N elements where 
N is the number of frequencies at which 𝜀𝜀𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒  were 
measured). This method allows for the simultaneous 
regression real and imaginary data for a single 𝑔𝑔(𝜏𝜏) 
solution. However, regression of a single N element (i.e. 
for either real or imaginary component only) is also easily 
implemented. Relaxation time models can then be 
translated between real and imaginary permittivity via the 
Kramer-Kronig relation.  

 In our implementation the penalty term is 
proportional to the second derivative of 𝑔𝑔(𝜏𝜏) with respect 
to (ln 𝜏𝜏), 

‖𝑔𝑔(𝜏𝜏)‖ = � [𝑔𝑔"(𝜏𝜏)]2𝑑𝑑(ln 𝜏𝜏)
0

𝐷𝐷
(20) 

 The magnitude of the penalty term is governed by the 
smoothing coefficient 𝛼𝛼. Translating this to matrix form 
we get, 

𝐻𝐻(𝛼𝛼) = |𝑹𝑹𝑹𝑹 − 𝒃𝒃|2 + 𝛼𝛼‖𝑳𝑳𝑹𝑹‖ (21) 

 𝑹𝑹  is the transfer matrix, 𝑹𝑹  is the probability 
distribution of dielectric relaxation times, 𝒃𝒃  is the 
measured signal inclusive of noise, and ‖𝑳𝑳𝑹𝑹‖  is the 
penalty term.  

 The selection of the smoothing parameter is an 
important step. If the magnitude of penalty function is too 
small then the solution appears under regularised, often 
highly oscillatory and generally unphysical. Conversely, 
if the penalty function is too large, then not enough weight 
is given to the exact analytical solution resulting in very 
broad, under-defined distributions [43]. To select the 
alpha value we have used an automated method of 
generalized cross validation (GCV), which is described in 
detail elsewhere [44]–[46]. The basis of the GCV method 
is to sequentially remove data from 𝒔𝒔  and determine 
which value of 𝛼𝛼 for the regularised solution best predicts 
the omitted data. Scores are assigned to a defined range of 
𝛼𝛼 values, with the 𝛼𝛼 that minimizes the GCV score being 
the optimal smoothing parameter. 

4 Results 

Figure 2 shows experimental data for the real and 
imaginary relative permittivity of the shale sample at the 
six saturation conditions measured. In the dry state, the 
real part of the dielectric response was relatively flat 
ranging from about 7 at 100 MHz to about 10 at 40 Hz. At 
the first RH condition (23%), at frequencies < 10 MHz, 

the real part of the dielectric response rapidly increased to 
several hundred as frequency decreased to ~1 KHz, where 
a low frequency plateau was observed.  In the high 
frequency range (10-100 MHz) the real part of the 
dielectric response began to converge toward a plateau. 
With increasing saturation the plateau in the low 
frequency region remained fairly constant, until at a 
critical saturation (typically occurring for samples 
exposed to greater than RH 75-99%) the real part of the 
dielectric response began to increase again at frequencies 
around 1 kHz and lower. At full saturation this effect was 
greatest, with some real relative permittivity values at 40 
Hz reaching several tens of thousands for some samples. 
This low frequency transition to higher real permittivity 
as moisture content increased was coupled with a sharp 
increase in the imaginary component of the permittivity at 
sub-kHz frequencies. 

 

 
Figure 2. Measured real and imaginary dielectric permittivity 
of shale sample at varied saturation conditions. The real 
permittivity is fitted with the g(τ) regularised solutions (Model 
fit). The imaginary data is compared against the equivalent KK 
model derived from the real permittivity g(τ) solution.  

Using the regularisation steps previously outlined, 
we minimise a solution of 𝑔𝑔(𝜏𝜏)  against the real 
permittivity data (i.e. 𝜀𝜀(𝜔𝜔)

′  only). Then, via the Kramers-
Kronig relation we generate the model solution, 𝜀𝜀(𝜔𝜔)

′′ (𝐾𝐾𝐾𝐾),  
for the imaginary component of the permittivity using the 
𝑔𝑔(𝜏𝜏)  solution derived from on the real part of the 
permittivity data. This model solution, 𝜀𝜀(𝜔𝜔)

′′ (𝐾𝐾𝐾𝐾) , is then 
compared against the measured values for the imaginary 
permittivity (i.e. 𝜀𝜀(𝜔𝜔)

" ) (Figure 2). Assuming 𝜎𝜎(𝜔𝜔)
"

𝜔𝜔𝜔𝜔0
≫ 𝜎𝜎(𝜔𝜔)

′

𝜔𝜔𝜔𝜔0
 , 

which to a first order approximation should be true at 
frequencies < 1 MHz , then the differences between 



 

𝜀𝜀(𝜔𝜔)
′′ (𝐾𝐾𝐾𝐾)  and the experimental data will be related to in 

phase conduction current (equation 5). By subtracting the 
difference between 𝑔𝑔(𝜏𝜏) and the imaginary data, the in 
phase conduction at low frequency could be quantified 
Figure 3. 

 
Figure 3. Values of σ’ extracted from the differences between 
g(τ) solutions from real component of the dielectric permittivity 
and imaginary permittivity data plotted as function of frequency. 

The increase in a sample’s moisture content driven 
by humidity produced negligible contributions to in-phase 
conductivity up to a RH of 45%. At higher values of RH, 
conduction increased appreciably at frequencies below a 
critical value which also increased with moisture content. 
Above RH 45 %, the conduction magnitude increased 
appreciably with each increment in moisture content and 
was largely independent of frequency. We suspect the 
observed onset of conduction arises from counter 
diffusion currents between the bulk electrolyte and the 
polarised diffuse layer within the EDL (open EDL). In this 
case, the electrochemical potential that results from a 
deformed EDL drives the mass diffusion of ions as the 
system moves to electro-neutrality [47].  The magnitude 
of the conduction relates to the number of charge carriers 
involved, and the critical frequency to the electrostatic 
activation energy a charge carrier needs to overcome to 
exchange from the diffuse layer to the bulk (i.e. when 
EDL counterion diffusivity > time EDL is polarised).  

The evolution of dielectric relaxation time 
distributions with increasing moisture are shown in 
Figure 4. At the lowest RH condition (23%), the 
magnitude of Δε dramatically increased and the dominant 
relaxation time observed ranged from 10-3 – 10-4 s. 
Subsequent increases in moisture resulted in a downward 
shift of the dominant relaxation time, while the magnitude 
of Δε contribute by this polarisation process remained 
relatively constant. This observation is better described by 
the phenomenological model for EDL polarisation [32], 
[48] than by a MW-type polarisation. Increased water 
vapour saturation will result in a decrease in charge 
concentration, which in turn will result in the expansion 
of diffuse part of the EDL [36] and an increase in the 
counterion diffusivity [49]. From numerical studies of the 
Debye- Falkenhagen dynamics, a decrease in charge 
density would result in an increased characteristic 

relaxation time (opposite to that observed) while an 
increased counterion diffusivity would reduce the 
apparent relaxation time [50]. Hence, our experimental 
results suggest that the increased diffusivity of charge 
carriers in the EDL is the controlling factor in the 
observed shift in relaxation times between 10-3-10-6 s.  
The relatively constant magnitude of Δε suggests that for 
relative humidities between 23% and 45%, the 
polarisation process is constrained to within the EDL (i.e. 
a closed EDL with no exchange to the bulk). 

  

 

 
Figure 4. Evolution of dielectric relaxation time distributions 
after exposure to different RH environments. Domains with 
dominate polarisation mechanisms closed electrical double 
layer (τclosed EDL) and open electrical double or diffusion fluxes 
(τopen EDL) are identified.  Arrows indicate trend with increasing 
saturation. The Δε contribution from τopen EDL for the fully 
saturated states is much larger and hence it has been presented 
separately for clarity. 

At around the saturation state incurred at RH 75% 
there was a sharp increase in Δε that is related to a 
polarisation process with characteristic relaxation times 
~10-2-10-1 s. Furthermore, at a fully saturated conditions 
this polarisation mechanism completely dominates 
(Figure 4). This very large low frequency dielectric 
response is consistent with open EDL polarisation (often 
referred to as membrane polarisation) where a coupled 
electro-diffusional mechanism is acting between the 
diffuse part of the EDL and the bulk electrolyte, giving 
rise to large in-phase displacement currents and slow 
relaxation times (τD) [39]. This polarisation mechanism is 
driven by the difference in electrochemical potential 
between a polarised EDL and the bulk, which causes 
diffusive fluxes of oppositely charged ions.  



 

5 Conclusion  

Here we demonstrate the application of Tikhonov 
regularisation methods to compute dielectric relaxation 
time distributions from broadband (40Hz to 110MHz) 
dielectric data for a shale sample at varying partial 
saturation. The evolution in the dielectric response with 
moisture content was driven by polarization processes 
within the EDL (closed EDL) up to an apparent critical 
partial saturation. Thereafter, the polarisation was 
dominated by diffusion between the EDL and the bulk 
electrolyte (open EDL). Future work will extend the 
analysis such that the relaxation time analysis can be 
readily converted into diffusion lengths, hence allowing 
for microstructure quantification. Furthermore, including 
a greater range of measurement frequencies (i.e. mHz –
Hz and GHz) will assist in developing complete electrical 
property models for rocks and will also be a focus of 
future work.  
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