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Abstract. Advancements in imaging technology are enabling accurate simulations of transport properties through 
the pore space of an imaged rock sample, albeit at a computational cost. Meanwhile, machine learning has emerged 
as an alternate tool for modelling transport properties that, once trained, use a fraction of the computational resources 
that traditional simulations require. However, machine learning models often fail to strictly enforce physical 
constraints of the system, leading to solutions that are less accurate than that of traditional solvers. Here we propose 
a novel hybrid workflow that combines machine learning and conventional simulation methods to combine their 
speed and accuracy. The workflow begins with a 3D, binary image of a sample. A trained convolutional neural 
network learns spatial relationships between a porous medium geometry and predicts the electric potential field 
through the medium. A validated finite difference solver uses the predicted field as input and fine-tunes it to obtain 
a deterministic result. The proposed workflow provides reductions in computational cost without sacrificing solution 
accuracy on unseen samples despite not having a fully trained model. 

1 Introduction  

Quantifying electrical properties in porous media is an 
important method for characterizing and monitoring 
subsurface systems. It has applications in hydrocarbon 
reservoirs, carbon capture and storage [1], hydrogeology [2], 
and mineral exploration [3]. The electrical response of these 
systems aids in inferring the composition of the material and 
its phase distributions. 
 For example, in well-log interpretation of hydrocarbon 
reservoirs, the resistivity log is a particularly useful indicator 
of in situ fluid saturation estimations because of its sensitivity 
to the varying phase conductivities [4]. Conventional 
interpretation models generally rely on the assumption that 
saline formation water is the only conductive phase — that 
hydrocarbon and the solid matrix do not readily allow electric 
current to flow. Correlating the resistivity to fluid saturations 
are crucial to accurately assessing the viability of a reservoir. 

Fundamentally, electrical resistivity is an intrinsic 
property of a material that quantifies how strongly it conducts 
electric current. The overall resistivity response is subject to 
depositional and diagenetic processes that dictate the 
structure of the pore space and the phases that fill the pore 
space (assuming that the grains are not conductive). More 
specifically, resistivity measurements are most impacted by 
the electric tortuosity of the connected conductive region and 
variations in cross-sectional area of the conducting path [5]. 
The physical processes that result in these geometric 
heterogeneities can exist on multiple length scales, extending 
down to the nano- and micron-scales. 

Small scale (i.e., nanometer-to-micron-scale) 
heterogeneities can have a significant impact on the total 
electrical response of the system, arguably more so than for 
fluid flow [6]. Physical interpretations of larger length-scale 
correlation components, such as the Winsauer tortuosity 
factor [7] or the cementation exponent in Archie’s equations 
[8], often attempt to account for these pore-scale 
heterogeneities [9]. However, quantifying electrical behavior 
on the pore scale is critical to making inferences on larger 
domains.  
 Recent improvements in imaging technology have led 
to the observation of many porous media processes. Digital, 
3D image data acquired through high-resolution imaging, 
such as computed tomography (CT), micro-computed 
tomography (μCT), and focused ion beam scanning electron 
microscopy (FIB-SEM) reveal details of porous media 
structures on various length scales. Analyzing rock properties 
based on these digital images are collectively known as 
digital rock physics. Assuming a minimum representative 
elementary volume (REV) and sufficient resolution, direct 
simulations on these image samples provide an accurate 
picture of physical processes on the pore scale and the ability 
to upscale to larger length scales. Further, breakthrough 
innovations in storage, hardware, and software have provided 
the capability to process data, run simulations, and analyze 
results on increasingly large images. Digital Rocks Portal 
(DRP) [10] is highlighted here as an open repository that 
contains a wide range of porous media samples. It provides 
simulation and machine learning training data used in this 
work and many others [11, 12, 13]. 
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 Although imaging advancements have contributed to 
improved understanding of pore-scale processes, the 
computational resources required to handle the enlarged 
image sizes are likewise increasing. Conservatively, 
computational demands scale to the cube of the side length of 
the discretized domain. This becomes problematic when 
performing simulations on structurally heterogeneous 
samples, such as in carbonate rocks. Oftentimes, achieving a 
minimum REV (if possible) necessitates increasing the size 
of the image sample beyond a system’s hardware capabilities. 
This renders performing direct simulations on REVs of 
complex systems exceedingly difficult, typically resulting in 
long compute times on supercomputers. 
 Meanwhile, deep learning has emerged as an alternate 
tool for recognizing patterns from observational data. These 
algorithms have widespread applications in subsurface 
systems, including reservoir characterization, production 
optimization, and lithology interpretation and rock 
classification [14, 15, 16]. In the context of digital rocks 
physics, machine learning workflows have also been 
successful modeling some transport properties such as 
permeability and flow velocity [13, 17, 18]. However, these 
workflows often fail to strictly enforce the physical 
constraints of the system, leading to solutions that are less 
accurate than that of traditional solvers. Training accurate 
neural network models also require large quantities of data 
and are not easily generalized to complex, heterogeneous 
reservoir rocks. 

 

Fig. 1. Conceptual figure of the proposed framework. A trained 
neural network predicts the electric potential distribution through the 
pore space. A validated solver is then initialized with the prediction 
and obtains the potential and current fields through the medium. 
 

 Here we propose a framework similar to that of Wang 
et. al [19] for combining machine learning workflows and 
direct simulation methods (Fig. 1). A trained neural network 
extracts spatial relationships between a porous medium 
geometry and predicts the electric potential field through the 
medium. The predicted field is used as the initial condition 
for a validated Laplace equation solver and fine-tunes it to 
obtain a deterministic result. This framework combines the 
benefits of machine learning and direct simulation to reach a 
solution quickly without sacrificing accuracy. We also 
provide some guidelines and metrics for assessing the model 
predictions on unseen samples. 

2 Methods and Materials  

2.1 Dataset 

Porous media in the subsurface is comprised of a wide range 
of lithologies. Because most traditional resistivity 
correlations were developed for clastic, sedimentary rocks, 
we direct assessment of the proposed framework to 
predictions on such lithologies.  

To generalize our findings, we sample from open data 
benchmark on Digital Rocks Portal (DRP) [20, 21]. The 
catalog consists of 217 binary images spanning over 50 rock 
types and lithologies and were processed from 125 projects 
currently hosted on DRP. The catalog also includes results 
from flow and electrical simulations in addition to geometric 
and structural characterizations of the pore space. 
Subvolumes of 2563 and 4803 were extracted from the center 
of the original samples and oriented such that the direction of 
flow is parallel to the z-axis. The images were then 
preprocessed to ensure percolation and to eliminate all but the 
largest connected component of the pore space.  

As part of this study, we sample four numerically-
dilated sphere packs and four sandstone samples. The 
original, discretized sphere pack was reconstructed using the 
locations of the Finney packing of spheres [22]. Subsequent 
morphological operations (erosion and dilation) were 
performed to vary the porosity from 0.10 – 0.42. The five 
sandstone samples selected for this study originated from 
Neumann et al. on DRP [23] and include Parker, Leopard, 
Kirby, and Bentheimer sandstones with porosity values 
summarized in Table 1. We assume that the sandstone 
samples are clay-free. For both sandstones and sphere packs,  
we assume the solid matrix is non-conductive and the void 
space is fully saturated with conductive brine. 

Direct simulations often perform calculations on 
volume sizes exceeding 10003 voxels. However, memory 
constraints on the available graphical processing units 
(GPUs) severely limited the size of viable training data. The 
2003 subvolumes are therefore used for training data. 
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Table 1. Nomenclature, porosity, and simulated formation factor 
for sphere pack and sandstone samples. 

Sample Description 𝝓𝝓 F 
SP0 Eroded SP 0.418 3.57 ± 2.21E-04 

SP2 Dilated SP 0.293 6.48 ± 3.91E-04 
SP4 Dilated SP 0.182 15.38 ± 4.42E-02 
SP6 Dilated SP 0.099 98.71 ± 9.64E-01 
SS4 Parker SS 0.268 11.00 ± 6.33E-02 
SS8 Leopard SS 0.273 11.05 ± 2.22E-02 
SS9 Kirby SS 0.211 21.91 ± 1.23E-1 

SS11 Bentheimer SS 0.088 174.95 ± 4.12E0 

2.2 Electrical Simulations 

Traditional methods of relating electrical resistivity to fluid 
saturation (Sw) in clay-free reservoirs are commonly based on 
Archie’s empirical equations [8].  
 

𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑤𝑤
𝑎𝑎

𝜙𝜙𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛
 , (1) 

 
where Rt and Rw are the total resistivity and resistivity of 
formation water, a is the Winsauer tortuosity factor [7], ϕ is 
porosity, 𝑆𝑆𝑤𝑤 is the brine saturation, and m and n are 
experimentally obtained cementation and saturation 
exponents. 

The formation resistivity factor, F, is derived from 
Archie’s equation and relates the sample’s resistivity to its ϕ 
and a: 

 
𝐹𝐹 =

𝜎𝜎𝑤𝑤
𝜎𝜎𝑜𝑜

 =
𝑎𝑎
ϕ𝑚𝑚  , (2) 

 
where σw and σo are the conductivities of the brine and the 
fully brine-saturated formation, respectively. Physically, F 
can be considered a normalized conductivity that measures 
the influence of the pore structure on the conductivity of the 
sample. 

We assume a reliable segmentation of a porous medium 
into solid and void space and use it to solve the generalized 
Laplace equation for the electric potential distribution 
through the medium, 

 
𝛁𝛁 ∙ (𝜎𝜎𝛁𝛁𝜑𝜑) = 0 , (3) 

 
where 𝜑𝜑 is the scalar electric potential field. 
 The volume-averaged currents in the three coordinate 
directions are found using the solution to the finite difference 
representation of the Laplace equation. The total electric 
current, I, through the rock is defined as 

 

𝐼𝐼 =  �𝜎𝜎𝛁𝛁φ ∙ 𝑛𝑛� dA . (4) 

 
The electric current is then used to calculate the 

macroscopic conductivity of the rock 

𝜎𝜎rock =  
𝐿𝐿𝐼𝐼
𝐴𝐴Δ𝑉𝑉

 , (5) 

where L is the sample length, A is the area of a slice 
orthogonal to the flow of electric current, and ΔV is the 
difference in macroscopic electric potential applied at the 
inlet and outlet. Finally, we use σrock in equation 2 to calculate 
F. 

Every sample chosen for this dataset consists of one 
non-conductive grain phase and one conductive fluid phase. 
We, therefore, assign the conductivities of the grain and fluid 
phases to be 0 and 1, respectively. The potential value at the 
inlet and outlet slices are fixed and the electric potential is 
initialized as a linear gradient through the pore space. The 
normal component of the electric current density is set to zero 
at pore-grain boundaries. 
 We perform electrical simulations using Digital Rock 
Suite (DRS) [24]. To validate the code, we numerically 
calculated the electrical conductivities of 14 fluid 
configurations in a periodic, random, close-packing of 
spheres of uniform radius. The datasets, authored by McClure 
et al. [25], used the lattice Boltzmann method to determine 
equilibrium fluid configurations at different initial fluid 
saturations. We compare the DRS solution to that of DC3D.f, 
a similar, open-source code from the National Institute of 
Standards and Technology [26], The reported porosity of the 
sphere pack is 0.369 and has a computational domain size of 
9003 voxels. The code was validated using samples 
containing multiple fluids occupying the pore space. 
However, the scope of this study is limited to samples with a 
single occupying fluid. While electrical predictions in 
partially-saturated domains are desirable, accurate single-
phase electrical property prediction has remained a challenge 
and must be better understood first.  
 As Fig. 2 shows, both solvers showed good agreement 
in their results. Generally speaking, as the wetting phase 
saturation decreases, the bulk wetting phase becomes 
disconnected and a negative deviation from Archie’s law 
would be observed [27]. However, in this saturation regime, 
we would expect the resistivity to follow a linear trend in log-
log space (Archie’s law). The power law fit further supports 
validation of DRS as the fitting parameters, a and n, matched 
the expected values for a packing of spheres.  

Fig. 2. Comparison of resistivity calculation results on a 9003-
voxel packing of spheres at various brine saturations. Both 
results follow a linear trend as described by Archie’s equation; 
however, Digital Rock Suite performed better at smaller 
saturations. Each simulation uses 64 processors on the 
Stampede2 cluster in the Texas Advanced Computing Center 
(TACC). 
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In terms of run times, DRS was generally faster than 
DC3D.f and saw considerable improvement at smaller water 
saturations.  

2.3 Machine Learning Model 

Direct numerical simulations on images can accurately 
describe physical phenomena through complex geometries. 
However, fully deterministic calculations are often 
computationally demanding, particularly for large domains.  

Another promising avenue is using data-driven models 
to estimate properties from 3D images. Machine learning 
(ML) has emerged as an effective tool for finding complex 
relationships in structured data. Making predictions with ML 
models is computationally inexpensive compared to 
traditional simulations.  

For any neural network, the training phase is the most 
resource-intensive task. Typically, models are trained on 
GPUs because their hardware architecture enables them to 
handle more parallel processes than their CPU counterparts. 
However, most commercially-available GPUs host memory 
ranging from 2 – 24 GB, resulting in a constraint on the size 
of viable training data. This presents a bottleneck for network 
training in that training on images larger than the required 
minimum REV is often difficult or impossible with current 
hardware resources. 

To circumvent this constraint, previous networks often 
employed patch-based learning [13, 19] in which the image 
is divided into small subvolumes. This was advantageous in 
that the network could train and predict on any arbitrarily-
sized volume. However, patch-based learning assumes 
stationarity of the flow statistic and, therefore, depends on the 
statistical homogeneity of the pore space.   

For the proposed framework, we adopt the MultiScale 
Network for hierarchical regression (MS-Net) [18], which is 
the first convolutional neural network (CNN) that 
successfully predicted permeability of imaged samples that 
included heterogeneities such as fractures and vugs. The 
network architecture was designed to capture morphological 
information across entire 3D volumes by using a hierarchical 
set of models, each responsible for learning increasingly 
coarse realizations of the input data. Santos et al. [18] 
originally used this network to predict the fluid flow velocity 
field and absolute permeability from a 3D binary image. 
Preliminary results indicate that the same network 
architecture can be adopted to predict the electric potential 
field. 

The coarsening process involves averaging each group 
of 8 neighboring pixels (in 3D) to obtain a new image that is 
8 times smaller than the original (Fig. 3). In this fashion, the 
model can see the image in its entirety, allowing it to 
recognize heterogeneity in the pore space. The hierarchical 
network architecture consists of a system of smaller neural 
networks. The individual neural networks train and predict on 
the same input domain, but at different resolutions. The 
features that each network learns at its associated scale are 
used to inform the next refined scale. As such, the coarsest 
image and each prediction is subsequently passed to 
increasingly fine resolution scales until the original image 
resolution is recovered.  

 

 
The ground truth data for training comes from the 

output of the numerical solver, DRS. DRS initializes the 
electric potential through each slice of the image using a 
linear gradient between the inlet and outlet slice values (2 and 
1, respectively). We would expect the final solution to present 
similarly, except with deviations due to the configuration of 
the input geometry and the applied boundary conditions. The 
underlying gradient can be removed (detrended) to aid in 
improving machine learning model performance by 
subtracting the initial linear gradient and only training with 
residual values of the electric potential. From a machine 
learning perspective, the underlying trend can distort the 
relationship between the explanatory and response variables, 
hindering a model’s ability to learn. By detrending the data, 
we eliminate the need for the model to learn the underlying 
trend. This highlights anomalous regions where the potential 
value deviates from the underlying linear gradient 
initialization. The model then predicts these residual values 
to which the linear trend can then be re-added (retrended) to 
recover the original potential distribution. 

In this framework, we train the neural network using 
only the binary image as input.  

2.4 Assessment Metrics 

Neural networks have difficulty generalizing to features they 
have not seen before [28]. Common approaches for 
remedying this are by either increasing the diversity of the 
training data or by developing more robust relationships by 
including more information about the data (e.g. geometric 
features, physics-informed learning, etc.). Additionally, 
predictions of transport fields do not necessarily obey the 
physical laws that govern such processes. Whether providing 
the network with more training data or employing the 
proposed framework, traditional simulations are still a 
necessary component to scientific research. 

The assessment of the proposed framework leverages a 
phenomenon known as overfitting. Overfitting occurs when 
the network depends on specific details of the training set —
in essence, the model fits to the noise of the training data. 
Theoretically, a completely overfit model will predict the 
training data with 100% accuracy. Overfitting is generally 
undesirable because it only performs well on the training data 
while making relatively poor predictions on unseen data.  

The scope of this study is not to produce a generalizable 
model, but to assess the degree to which a model should be 
trained to see benefits in simulation run time. We, therefore, 
perform a sensitivity analysis in which models are 

Fig. 3. Example coarsening of the ground-truth image, in this 
case the detrended electric potential. Average pooling is 
performed on each successive layer to reduce the size of the 
preceding image by 23. A system of networks are trained on each 
scale, with coarser images informing finer images.  
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intentionally overfitted to the provided training data. These 
models are intended as the “best case” scenario in which the 
error in prediction for the supplied training sample is 
minimal. They are not intended to be generalized models that 
can be applied to predict on other domains. Each model is 
provided one training sample, is trained for approximately 
30,000 epochs, and predicts on the same training sample. 
Intermediate model states are saved throughout training to 
track the model’s progression. The intermediate and final 
predictions are supplied to DRS and the run times to 
simulation convergence are compared. 
 We explore nine metrics to assess the training-data 
prediction accuracy of the model throughout training. We 
calculated each metric directly on the predicted detrended 
field (model output) and on the manually re-trended field 
(input field supplied to DRS). These metrics are evaluated 
against the simulation run times to gain insights into the 
components important to the success of the proposed 
framework. When the ground-truth is known, such as in 
training and validation data for supervised learning, the most 
important metrics can be included as additional penalization 
criteria. When generalizing to unseen data, metrics that do not 
require a known solution can also be calculated to evaluate 
the quality of the prediction. 

2.4.1 Norms 

Neural network training is an optimization problem in which 
a loss function is minimized. Because loss functions are 
measures of prediction error, the vector norms of the 
difference between the labeled data and the predictions are 
commonly employed in loss functions. MS-Net uses the 
Mean Squared Error (MSE) loss function between the 
ground-truth (𝑌𝑌𝑖𝑖) and predicted (𝑌𝑌𝚤𝚤�) fields, 
 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛
��𝑌𝑌𝑖𝑖 −  𝑌𝑌𝚤𝚤��

2
𝑛𝑛

𝑖𝑖

. (5) 

 
The use of MSE causes MS-Net to preferentially penalize 
larger magnitudes of |𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤�|.  In other words, the network 
pays more attention to model parameters that cause 
predictions to diverge further from the true field. For 
comparison, we also calculate the L2 distance between 𝑌𝑌𝑖𝑖 and 
𝑌𝑌𝚤𝚤� , 
 

𝐿𝐿2 =  ��(𝑌𝑌𝑖𝑖 −
𝑛𝑛

𝑖𝑖

𝑌𝑌𝚤𝚤�)2. (6) 

 
 
 Alternatively, one may choose to use the mean 
absolute error (MAE), based on the L1 distance, as the loss 
function. This loss function is less sensitive to outliers than 
MSE because the values are not squared. We, therefore, 
calculate the L1 distance to the ground truth, 
 

𝐿𝐿1 =  ��𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤��
𝑛𝑛

𝑖𝑖

. (7) 

 

2.4.2 Peak Signal-to-Noise Ratio 

Peak signal-to-noise ratio (PSNR) is commonly used to 
quantify the “closeness” of an image to being an exact copy 
of another such as when filtering images. It is a voxel-by-
voxel calculation, derived from MSE, that determines 
imperceptible differences between two images and is defined 
as 
 

𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅 = 20 log10
MAX𝐼𝐼

𝑀𝑀𝑆𝑆𝑀𝑀�𝑌𝑌𝑖𝑖 ,𝑌𝑌𝚤𝚤��
 , (8) 

 
where MAX𝐼𝐼  is the maximum possible voxel value of the 3D 
image. The PSNR value decreases as the MSE increases, 
implying large differences between the input images.  

2.4.3 Histograms 

Analyzing the histogram of  𝑌𝑌𝚤𝚤�  reveals important information 
about the training progression and areas that the model has 
difficulty training. Comparing the distributions of  𝑌𝑌𝚤𝚤�  and 𝑌𝑌𝑖𝑖 
can also help to confirm error metrics.  

Detrending a field helps the network train by 
eliminating the need to learn the variance due to an 
underlying trend. As previously stated, detrending the 
potential field highlights anomalous regions in which the 
potential deviates from the underlying linear trend. These 
residuals are approximately normally distributed about a 
mean close to zero. Here we track the mean of  𝑌𝑌𝚤𝚤�  , which 
should approach the expected value of 𝑌𝑌𝑖𝑖 as training 
progresses.  

2.4.4 D-2 Score 

The result of both patch-based networks and multiscale 
networks are predictions made up of perceptible blocks. 
These are unphysical artifacts of the network algorithm due 
to the convolution operation. When analyzing these types of 
images for mass conservation or slice-wise flux continuity, 
the boundaries between blocks manifest as large jumps in 
otherwise continuous behavior. If unresolved, these can 
negatively impact calculations of properties, such as F or 
permeability. MS-Net appears to refine these blocks as 
training continues; however, they are still seen even after the 
model is severely overfit.  
 We quantify the smoothness of the image using a value 
derived from taking the Laplacian of the image — the D-2 
score. First, the Laplacian of the image is taken, 
 

∇ ∙ ∇ 𝑌𝑌� =  
𝜕𝜕2𝑌𝑌�
𝜕𝜕𝑥𝑥2

+  
𝜕𝜕2𝑌𝑌�
𝜕𝜕𝑦𝑦2

+ 
𝜕𝜕2𝑌𝑌�
𝜕𝜕𝑧𝑧2

 . (10) 

 
The Laplacian of the image is calculated by convolving the 
predicted image with a 27-point Laplacian stencil [29]. We 
sum the Laplacian over all pore voxels to calculate the D-2 
score. When compared to the D-2 score of the labeled training 
image, intermediate predictions with more pronounced 
boundary effects will have a larger D-2 score. The D-2 score 
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begins to decrease throughout the training progress as the 
artificial boundary effects are refined.  
 

2.4.5 Formation Factor  

Finally, we calculate the formation factor of 𝑌𝑌� . The average 
current flux in the direction of flow is used for calculating F, 
so evaluating this property and its associated uncertainty in 
the predicted image is an indication of flux continuity through 
the image.  
  The uncertainty (standard deviation) in the current flux 
across every slice orthogonal to the flow direction is used as 
a convergence criterion in DRS simulations. Therefore, 
calculating the uncertainty in F in the prediction provides a 
direct comparison to DRS convergence. 
 Here, we convolve the prediction with a finite difference 
kernel to calculate the component of the current density 
parallel to the direction of flow. We then implement a 
masking scheme to respect the pore-grain boundary 
conditions outlined in the DRS algorithm. Like DRS, this 
component of current density is summed over each 
orthogonal-to-flow slice to find the current flux. Finally, the 
average and standard deviation of these fluxes are used to 
evaluate the macroscopic conductivity and formation factor. 

3 Results and Discussion 

MS-Net is trained using single 3D, binary images of 2003 
sphere packs and clean sandstones. The models’ accuracy of 
predicting the potential field of the training samples is 
evaluated. The accuracy metrics are compared against the 
predicted formation factor. Finally, we investigate possible 
relationships between these metrics and accelerating 
simulation results by using the predicted field as input.  

Training was performed using Nvidia 16 GB V100 
GPUs on Longhorn — a Texas Advanced Computing Center 
(TACC) resource. Each model was trained for ~30,000 
epochs, requiring ~16 hours of training time. This illustrates 
the cost balance between machine learning training and 
simulation that must be considered. Though models can 
require long training times (order of hours to days), making 
predictions are effectively instantaneous when compared to 
simulations. For example, in this study, testing is performed 
on a local desktop machine with 64 GB RAM and required 
only a few seconds to make a prediction. Using this 
framework with generalized models can lead to reaching 
accurate solutions far more quickly for a limitless number of 
unseen samples. This framework can also be extended to 
more complicated solvers that generally require longer run 
times for more immediate run-time reduction benefits.  

3.1 Evaluation of Training Performance 

The training progress of machine learning models are 
commonly tracked using the models’ loss functions. 
Common examples of loss functions are MAE (L1 loss) and 
the MSE (L2 loss). 

The L1 norm (Fig. 4) of the detrended field 
monotonically decreases as training progresses, an indication 

that intermediate predictions are approaching the labeled 
data.  

 The L2 loss (Fig. 5) shows similar behavior. The L1 and 
L2 losses follow the same general curve for a particular 
sample. SP2 and SS4 maintain the largest error throughout 
training among their respective sphere packs and sandstone 

Fig. 5. L2 distance to ground truth of various models saved 
through training. Similar to the MAE (Fig. 4), the MSE 
monotonically decreases as training progresses for both the 
sphere pack samples (left) and sandstone samples (right). 

Fig. 4. L1 distance to ground truth of various models saved 
through training. The L1 distance, or MAE, is a common training 
performance metric. For both the sphere pack samples (left) and 
sandstone samples (right), we see that the MAE monotonically 
decreases as training progresses.  
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samples. SP6 and SS11 tend to have the smallest error during 
training, though this could be an artifact of their small 
porosity values.  
 As previously discussed, the MS-Net architecture trains 
convolutional neural networks on multiple resolution scales. 
Making predictions using this architecture involves a 
refinement operation, which results in blocky predictions. 
These blocks are artificial discontinuities within the pore 
space and will negatively impact calculations of macroscopic 
properties, such as F.  
 The Laplacian of the image (Fig. 6) highlights regions 
where rapid changes in intensity occur. Naturally, this occurs 
near the pore-grain boundary, where boundary conditions 
must be enforced. The potential within grains is assigned to 
be zero while the potential values in the pore space change 
gradually and with an approximately linear underlying trend.  
Therefore, the Laplacian should be close to zero within the 
pore and the grain space.  
  

Evaluating the Laplacian of the prediction captures the 
large change in image intensity near the pore-grain boundary 
and along the artificial discontinuities. As training progresses, 
MS-Net tends to refine these blocks. Nonetheless, they are 
still prevalent in the model predictions, even in highly overfit 
models. This highlights the need for more intelligent masking 
operations to refine the resolution of the prediction from the 
coarsest scale. One could also incorporate smoothing 
operations, such as median filtering, into model training.   

3.2 Evaluation of Predicted Formation Factor 

To compute the current density, we convolve the predicted 
electric potential field with a finite difference kernel and sum 
the result over each slice. The average of the slice-wise sum 
is used to calculate the predicted formation factor (𝐹𝐹�). 

𝐹𝐹� of the final model matches closely with the simulation 
results for both the sphere packs and the sandstone samples 
(Fig. 7). In general, the model underpredicts the value of F, 

particularly at smaller values of porosity. Likewise, the 
uncertainty in 𝐹𝐹�, calculated from the standard deviation in the 
sum of the slice-wise current flux, increases with decreasing 
porosity. These observations can be attributed to the potential 
value discontinuities at the boundaries of the block artifacts. 

Fig. 7 also shows a clear relationship between the 
uncertainty of 𝐹𝐹� and the simplicity of the pore system — the 
uncertainty in 𝐹𝐹� of the sandstone samples is larger than that 
of the sphere packs. The uncertainty in 𝐹𝐹� stems from local 
heterogeneities of the pore space. Structural details, such as 
tortuosity and constriction factor, nonuniformly affect the 
current flux and are not directly accounted for when 
evaluating F. Therefore, the uncertainty in 𝐹𝐹� is generally 
small for more homogeneous samples like sphere packs and 
in samples with large porosity. 

 
 Although the MSE monotonically decreases with 
training epoch, the relative error in 𝐹𝐹� does not follow the 
same trend (Fig. 8). Several samples show good early 𝐹𝐹� and 
are only slightly improved by the final prediction, at the 
smallest MSE. Broadly speaking, this is indicative of the fact 
that F is a macroscopic quantity and does not account for the 
exact microscopic details of the pore space. The implications 
of this are that undertrained models are still serviceable as F 
estimators. Nevertheless, additional training generally still 
results in a decrease in the relative error of 𝐹𝐹�. This is apparent 
in the sandstone samples where later 𝐹𝐹� are closer to the 
expected result than early 𝐹𝐹� .  

Fig. 6. Example slice (200 x 200) of the Laplacian transform of 
a) DRS output, Laplacian of the model predictions after b) 1000, 
c) 15000, d) 30000 training epochs. The Laplacian highlights 
sharp contrasts in voxel values (grain-pore boundaries and block 
artifacts). As training progresses, the boundary effects gradually 
disappear, which, when summed, results in decreasing D-2 
scores approaching that of the simulation output. 

(a) (b)

(c) (d)

Fig. 7. Formation factor comparison between the simulated 
result (black circles) and the final model prediction (red 
triangles). The predicted values of formation factor are fairly 
accurate for both sphere packs (left) and sandstones (right) but 
tend to underpredict the ground truth. The uncertainty of the 
prediction is much larger than that of the simulation.   
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3.3 Evaluation of Simulation Time Improvement 

To assess the proposed framework, we save the re-trended 
predictions of intermediately trained models and feed them to 
DRS as initial conditions. We note the number of iterations 
that DRS requires to reach convergence and normalize it by 
the number of iterations required when assuming a linear 
potential gradient. 

Typical simulations used for this study required 
between 800 – 2000 iterations to converge (more porous and 
well-connected samples generally required fewer iterations). 
The actual wall-clock run time for the simulations are largely 
hardware dependent. Because the images used in this study 
are relatively small, the total simulation run time only lasted  
 Here, we report the most illuminating metrics. We first 
investigate metrics associated with supervised learning — 
those that compare predictions with labeled data. We then 
look for relationships between unsupervised metrics and run 
time improvements to provide example diagnostics that can 
be included in future model training.  

3.3.1 Supervised Metrics 

Using 𝑌𝑌�  as the initial condition for DRS results in a drastic 
improvement in the required run time to convergence (Fig. 9). 
In the best cases, the proposed framework saw over an order 
of magnitude improvement, reducing the number of iterations 
to convergence to less than 10% of that of the linear gradient 
assumption.  
 
 

 
MSE is a decent predictor of the run time improvement, 

where the number of iterations to convergence decreases with 
decreasing MSE. However, the plateau in iterations at large 
MSE indicates that the model needs to achieve a threshold 
accuracy before seeing a significant improvement in run time. 
Nevertheless, even under-trained models with large MSE still 
sees over a 50% improvement in run time, implying that 
models do not necessarily need to make entirely accurate 
predictions to seeing benefits in run time. This has important 
implications for the use of the proposed framework, 
particularly when applying a trained model to unseen data. 
We also expect to see more significant improvements as the 
size and complexity of the image increases. For example, the 
9003 spherepack samples used for code validation required 
simulation times upwards of 10 hours for the smallest 
saturation points. This could feasibly be reduced to a run time 
of only a few minutes if supplied an extremely accurate 
prediction result. If one assumes that the simulation run time 
approximately scales to the cube of input image side length 
[13], we hypothesize that one could feasibly start seeing 
significant run time benefits when predicting on ~5003 
images (2+ hours of simulation time reduced to several 
minutes).  

Fig. 9. Normalized number of iterations to convergence error 
versus MSE (decreasing MSE to the right). The framework 
improves the run time of both sphere packs (left) and sandstones 
(right) to less than 10% of the original.  

Fig. 8. Relative error in the formation factor prediction versus 
MSE (decreasing MSE to the right to reflect training 
progression) of the sphere pack samples (left) and the sandstone 
samples (right). Decreasing MSE does not necessarily indicate 
improved formation factor prediction. 
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Because PSNR is derived from MSE, it exhibits similar 
predictive capability of run time improvement as MSE (Fig. 
10). The curves also show slow improvement in run time at 
small values of PSNR. At a PSNR value of ~ 40, we begin to 
see drastic improvement in run time. Except for SP0 and 
SS11, we do not see the run time curves level off in this PSNR 
range, implying that further run time improvement is 
possible.  

3.3.2 Unsupervised Metrics 

Thus far, the discussed metrics for run time improvement 
have required labeled data against which the prediction is 
evaluated. When extending models to unseen samples, the 
test data does not yet have a labeled ground truth. 
Unsupervised learning is advantageous in this respect where 
the model learns from patterns in unlabeled data. Here, we 
discuss a few performance metrics that can be calculated on 
the prediction itself, without the need for labeled data. These 
metrics are suggestions for diagnostic tools that can be used 
to assess whether the solver will see a significant run time 
improvement by initializing using the model prediction. 
 We first explore the uncertainty in the slice-wise current 
flux — the solver’s primary convergence criterion (Fig. 11). 
We compute the uncertainty using the method outlined for 
computing F, but stop short of calculating the macroscopic 
conductivity. The uncertainty in the current flux is a direct 
point of comparison to the convergence of DRS. We, 
therefore, expect a direct relationship between the decrease of 
the number of iterations to convergence and the decrease of 
uncertainty in current flux. Fig. 11 confirms this hypothesis, 
where we see three distinct regimes of run time improvement.  

First, the improvement in run time is somewhat gradual 
at large current flux uncertainties. The run time speed-up in 

this uncertainty range can be substantial in relatively open 
geometries such as in SP0 and SS4, with run times 
accelerating by over 20%. In tighter or more heterogeneous 
samples, such as SP6 and SS8, the initial run time 
improvement is not as significant. This is because the solver 
needs to fix prediction errors that occupy a larger fraction of 
the computational domain.  

Next, when the uncertainty in current flux is reduced to 
0.1-0.2, we see a sudden drop in the necessary iterations to 
convergence. In some cases, such as in SP0 and SS11, the 
number of required iterations drops to under 10% of that of 
the linear gradient assumption. The size of the drop is not 
necessarily dependent on the porosity or complexity of the 
sample. In the sphere pack samples, where the sphere 
locations remain constant, smaller porosity geometries do not 
tend to see the same level of run time improvement as their 
larger porosity counterparts. However, the amount by which 
the tightest sample improves is larger than some of the more 
open samples.  

After the large drop, the run time improvement curve 
either levels off or continues a more gradual decrease. The 
curves appear to approach a theoretical run time limit, 
constrained by the solver itself and the level to which the 
model can resolve the blocks in the prediction. We cannot 
report further run time improvement in samples that have 
already reached this limit (SP0 and SS11), even with further 
training and error reduction. In the cases where the theoretical 
limit has not yet been reached, it appears the geometric 
complexity of the pore space dictates the rate by which the 
run time continues to improve. Using porosity as a proxy for 
complexity, we see that larger porosity samples tend to 
improve more rapidly after the initial drop than smaller 
porosity samples. This is consistent for both sphere pack and 
sandstone samples. We also observe that for similar porosity 

Fig. 10. Normalized number of iterations to convergence error 
versus PSNR. At PSNR of ~40, we begin to see large 
improvements in run times in both sphere packs (left) and 
sandstone (right) samples. 

Fig. 11. Normalized number of iterations to convergence error 
versus uncertainty in current flux (decreasing to the right). The 
uncertainty in current flux provides a direct point of comparison 
to the solver. We see a large drop in run time at uncertainty 
~10% for both sphere packs (left) and sandstones (right).  
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samples (~ 0.2), the run time in this regime improves more 
slowly for more geometrically complex samples (sandstones) 
than for simpler samples (sphere packs).  
 Finally, we discuss the Laplacian of the image as an 
indicator tool of solver run time improvement. During 
training, we identified the refinement block artifacts as the 
largest source of errors. As training progresses, the block 
artifacts tend to become more refined and the D-2 score 
decreases. We mask the pore space immediately adjacent to 
grain-pore boundaries (Euclidean distance = 1) to mitigate the 
effects of these boundaries on the D-2 score. We also found 
that normalizing the D-2 score by the solid volume raised to 
the 2/3 power helped to overlap the curves for better 
comparison. Physically, the D-2 score accounts for phase 
discontinuities at the solid-pore boundary, so raising the solid 
volume to the 2/3 power provides a value dimensionally 
consistent with surface area. 
 We see behavior in the sphere pack samples like that of 
the uncertainty in current flux where a large drop in run time 
precedes more gradual improvement (Fig. 12). However, we 
also see non-unique values of iterations to convergence for a 
singular D2 score, indicating that it may not be as good of a 
predictor as the uncertainty in current flux.  

 In the sandstone samples, we see that the normalized 
curves agree with each other quite well, except for the tightest 
sample (SS11). In the other three cases, we observe a well-
behaved decrease of run time in this normalized D-2 score 
range. This indicates that a non-trainable Laplacian filter or 
D-2 score could be implemented in a neural network as a 
performance metric and could help guide model training. 

4 Conclusions 

This study confirms that the proposed framework of 
initializing a solver with a machine learning prediction can 
drastically reduce the run time needed to achieve a 
deterministic result. Here, we limit the samples to a size of 
2003 due to GPU limitations and we observed over an order 
of magnitude run time improvement. 
 Throughout this study we also conclude the following: 

• Commonly used error metrics (i.e., MAE and 
MSE) do not always provide adequate detail of 
the predictive performance of the model.  

• An initial ML prediction does not need to be 
exact to result in an accurate formation factor 
prediction 

• Supervised metrics, such as MSE and PSNR, 
are good indicators of run time improvement. 

• Achieving a convergence metric of ~ 0.1 – 0.2 
drastically decreases the number of iterations 
to convergence.  

• The D2 score can be incorporated into the 
model loss to help smooth the predictions. 

This framework has important implications for training 
predictive models. These metrics can serve as performance 
criteria when the model is extended to unseen data. It is clear 
that even overfit models struggle to make perfect predictions 
and that solvers are still needed to enforce the conservation 
laws the solution is required to obey. 

The sizes of the image data used in this study are 
admittedly small because we predicted on the same set of 
images as was used to train the models. The intent was to 
assess the sensitivity of the run time improvement to the 
proposed error metrics. Because testing can be performed on 
CPUs, the prediction samples are not limited to the same sizes 
as the training data. We expect more significant run time 
improvements if applying the framework to larger image 
samples where any gains are a balance between the reduced 
accuracy when predicting on unseen images and a model’s 
ability to make predictions effectively instantaneously.  

Future work will emphasize the development of more 
generalizable models and assessing these metrics on larger 
images. Because the actual prediction space accounts for less 
than 30% of the entire image (only pore space), training on 
larger images could possibly be achieved by supplying the 
network with a sparse representation of the pore space during 
training. Incorporating findings from this study, we plan to 
implement the finite difference kernel used to find the current 
flux as a hard constraint, thereby limiting the prediction space 
to more physical solutions. We also plan to incorporate the 
Laplacian filter into the cost function to mitigate the block 
effects of the refinement process. More robust models can be 
developed by including morphological feature maps (e.g., 
Euclidean distance map, time of flight, maximum inscribed 
sphere, etc.) as extra training channels, instead of only using 
the binary image.  
  

Fig. 12. Normalized number of iterations to convergence error 
versus normalized D2 score (decreasing to the right). The D2 
score is normalized by (1 − 𝜙𝜙)

2
3. While we see similar behavior 

as Fig. 11, several D2 scores exhibit non-unique iterations to 
convergence. However, it is still a good indicator of how blocky 
the prediction is.  
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