1988 SCA Conference Paper Number 8802

Calculation of Capillary Pressure Curves from Data
Obtained by the Centrifuge Method

Douglas Ruth
(Associate Professor, Mechanical Engineering, University of Manitoba, Winnipeg,
Manitoba, Canada; Senior Technical Advisor to GEOTECHNnical resources ltd.)

Sidney Wong
(Research Engineer, GEOTECHRnical resources ltd., Calgary, Alberta, Canada)

ABSTRACT

The various methods of reducing data collected
by means of a centrifuge to obtain capillary pres-
sure curves are described. A detailed comparison
between the results obtained by Bentsen’s parame-
ter estimation technique, the Hassler and Brunner
approzimate technique, the van Domselaar method
and a new method based on linear interpolation of
the capillary pressure points is presented. This com-
parison i3 based on analysing simulated experimen-
tal data for a range of types of capillary pressure
curves. The data is generated using the Bentsen
method; therefore, this method provides the basis
of comparison. It is found that the Hassler and
Brunner method systematically underestimates the
values of capillary pressure, while the van Domse-
laar method systematically overestimates the values
of the capillary pressure. The linear interpolation
method is in good agreement with the simulated re-
sults. Four sets of ezperimental dala are analysed
by the Bentsen and linear interpolation methods. In
two cases, poor agreement i3 found between the re-
sults for the two methods. The cause of this be-
haviour is traced to the quality of the data. For all
differential methods, the data must be obtained be-
fore the inner face of the core attains an irreducible
saturation. Data analysis by more than one method
i3 recommended in order to ensure proper interpre-
tation of the resulis.

INTRODUCTION

The calculation of capillary pressure curves from

centrifuge data has been problematic since the cen-
trifuge method was first introduced over 40 years
ago. The classic method, due to Hassler and Brun-
ner (1945), was recognized by its authors as ap-
proximate. An ‘exact’ method, proposed by Hoff-
man (1963) was later show by Luffel (1964) to be
in error. A second ‘exact’ method proposed by
van Domselaar (1984) has also been shown to be
an approximation (Rajan (1986) and later Melrose

(1988)) .

The problem of data interpretation arises be-
cause the capillary pressure versus saturation curve
is not measured directly. The measured data are
the amounts of fluid produced and the rotational
speeds. The cumulative amount of fluid produced
at any speed can be used to calculate the mean sat-

uration in the core , S, using the equation

5 - (Vo —Va)
S—Tda (1)

where V, is the original volume (in the core) of the
liquid being displaced from in the core, Vg is the
measured cumulative volume of this liquid actually
displaced, and V}, is the pore volume of the sam-
ple. In turn, the speed may be used to calculate
the capillary pressure at the inside face of the core
sample using the formula

1
P, = 3 w2 Ap (r2 —r?) , (2)

where w is the rotational speed, Ap is the differ-
ence in density between the two phases, r, is the
radius to the outside face of the core, and r; is the
radius to the inside face of the core. Hassler and



Brunner showed that S and P.; were related by the
expression

P
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the capillary pressure at any location, r, along the
core. This equation, which will be referred to as the
Hassler-Brunner equation, has resisted exact solu-
tion. Hassler and Brunner obtained a first approx-
imation by assuming that A = 1 and B = 0. The
equation may then be rearranged and differentiated
with respect to P,; to obtain

_d(SP)

S(Pei) = —gp— - (5)
This equation successfully relates saturations and
capillary pressures at a single physical location (the
top of the sample), thereby allowing the calculation
of a capillary pressure curve.

Melrose has presented a solution of the Hassler-
Brunner equation that attempts to account for at
least part of the effect of A and B varying from 1
and 0 respectively. Expanding the square root in
powers of the argument:

B P, 1BP; 3 (BP;\?
1- =144
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L5 BPc. .
16

After substituting into the Hassler-Brunner equa-
tion and differentiating, Melrose obtained an equa-

(6)
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tion that is equivalent to

I 2i-1)

1<j<n
e z<w =
1<j<n
Pci
REJEMRJ VI-Bd(EP)
0 dP,;

(7)
Melrose proceeded to solve Equation 7 by making
use of the assumption
P.; ci
S(Py;) PL dPi = .S'/ P2 dP; , (B)
0 0
and obtained van Domselaar’s equation:

x/———__(i051%J vi-B
s (457

The solution procedures discussed above may all
be classed as differential methods because they rely
on obtaining experimental estimates of the gradi-
ent of (_S_Pc.-) with P,;. Because they involve the
calculation of differences, differential methods are
in general highly sensitive to experimental error .
An alternate approach to reducing the data is pro-
vided by the parameter estimation technique put
forward by Bentsen and his co-workers (Bentsen
and Anli (1977), Golaz and Bentsen (1980)).
this method, a functional form is assumed between
P, and S. One form that will be used in the present
paper is

S(Pu) =

S_Srl
. = In{—=2—°2rt ) |
P, a+bn<1_51_&q) (10)

where a and b are constants to be found during
data analysis, and the subscripts on S refer to the
residual values for the two phases (phase 1 is as-
sumed to be the phase being displaced). If a and
b were known, then the Hassler-Brunner equation
could be solved (if not exactly, at least numerically
to any degree of accuracy) to give the experimen-
tally observed S versus P.; behaviour. However, a
and b are not know. In order to apply the method,
a and b are assumed, and a simulated production
history is calculated. By comparing the simulated
production history with the actual production his-
tory, an iteration scheme may be used to find the



values of a and b that give the best approximation
of the experimental values of production.

In the present paper, comparisons are drawn be-
tween results derived using the Hassler-Brunner ap-
proximation, the van Domselaar equation, the pa-
rameter estimation technique of Bentsen and a new
method which is based on replacing the assumption
made by Melrose in Equation 8 with a more general,
experimentally based assumption. This method is
based on linear interpolation between the calcu-
lated capillary pressure versus saturation points,
and will be referred to as the linear interpolation
method (LIM).

LINEAR INTERPOLATION METHOD
Figure 1 shows the typical behaviour of S(P;),
thatis, the saturation at the top of the core as a

function of the capillary pressure at the top of the
core. During an experiment, only a discrete number
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Figure 1 Experimental Capillary Pressure Curve

of points on the curve are actually realized. There-
fore, the simplest shape of the curve can be ob-
tained by drawing straight lines joining the experi-
mental data points. Of course these points are not
known, and are in fact the information being sought
in the experiment. However, if they were known,
then the saturation could be found at any value of
capillary pressure between the points by the inter-
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polation equation

_ Sk — Sk—1
S(2) = Sk1+ p—p=— (2= Zx-1) , (1)
where
Z = Pci ’ (12)

and the subscript k denotes the experimentally de-
rived values of Z and the corresponding, calculated
values of S. This interpolation formula may be used
to evaluate the integral derived by Melrose. The ex-
perimental data consists of a set of matched Si -
Z). data. The integral must therefore be evaluated
for each pair of data points. However, for each new
pair of points, the previous values of Si are known.
The only unknown is the value of the saturation
that corresponds to the current value of Z;. On
substituting the interpolation formula into the in-
tegral:

Z Zo
S(2) 2" dZ = / Zndz
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(13)
where the first integral accounts for the case where
a finite threshold capillary pressure exists. For that
case, Zo is the value of the threshold capillary pres-
sure, otherwise, Zp is zero (ie. the first data point
is assumed to be at a fully saturated condition and
capillary pressure is assumed to be zero). Perform-
ing the integrations

Zy Z'n+l
S(z)zrdz ==
0 n

+1
(14)

k
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where

(15a)



and
Dy,; =
(n -+ 1) Z;H'I(Zj — Zj_l) - Zj_l (Z;+1 - Z;‘jll
(n+1)(n+2)(Z; — Zj-1)

(158)
For any application of Equation 14, the values of
Sj<k are known; therefore, the equation may be
cast in the form

Zy
S(Z) 2" dZ = Sy Dnr + Kok (16)
0
where
n+1 .
Ko = n(;_ 1 + SO(Cnl - Dn1)+

k-1 (17)
> [Sj(Dm‘ + Cn(j+1) — Dn (,-+1))] .
j=1

Substituting this equation into Equation 7 and re-

arranging
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The linear interpolation method allows the se-
quential calculation of the saturation at the top of
the sample from the experimental data and preceed-
ing values of the Si. In order to apply it, the only
assumption that must be made is the intital data
point (Zo and So), which would be the threshold
capillary pressure and fully saturated for a strongly
water wet rock, or the saturation of the rock at
capillary pressure equal to zero for a mixed wetta-
bility condition. Either of these data pairs may be
estimated from the measured data.

A COMPARISON OF THE METHODS

The various methods of analysing centrifuge cap-
illary pressure data were compared by first generat-
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ing simulated capillary pressure data using

Equation 10. Because the Bentsen parameter esti-
mation technique is used to calculate these results,
the following discussion uses the Bentsen method
as a basis for comparison. The data were generated
for an a of 12.0 kPa, and four values of b: -96 kPa,
-24 kPa, -6 kPa and -1.5 kPa. These values repre-
sent rocks with an increasingly wide distribution of
pore throat sizes. The Bentsen method was used to
predict the speeds and displaced phase productions
when the capillary pressures at the top of the core

were
Zr =12.0 x 1.05%, k=0 to 23. (20)

The remaining parameters used in the analysis are
presented in Table 1. These data are represen-

TABLE 1 Test Parameters for the Model

Parameter Value Units
Length 5.08 cm
Diameter 3.18 cm
Distance to Bottom 9.38 cm
Porosity 0.15

Phase 1 Density 1.00 gm/cc
Phase 2 Density 0.85 gm/cc
Sro 0.15

Sr1 0.00

tative of a typical experiment obtained by using
a Beckman PIR-16.5 rotor. The simulated pro-
duction versus speed results were analysed by the
Hassler-Brunner approximation, the van Domselaar
equation, and the linear interpolation method. Fig-
ures 2 through 5 show the results. The Hassler-
Brunner predictions are systematically low, with
the quality of the prediction deteriorating as b de-
creases. The van Domselaar predictions are system-
atically high. Both of these observations agree with
other published work (see for example the previ-
ously quoted works by Rajan and Melrose). For the
first two cases, the linear interpolation method pro-
vides estimates that are in excellent agreement with
the real curve. However, for b = —6 kPa there is a
slight departure from the real curve in the region of
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irreducible water saturation; this disagreement in-
creases for b = —1.5 kPa. (It should be noted that,
in all cases investigated, if the curves were analysed
to very high capillary pressures, all of the methods
eventually agreed with the real curve.)

In order to investigate this disagreement further,
some modified data runs were performed. The re-
sults for extending the radius to the bottom of the
core by a factor of 10 are shown in Figure 6. Here
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Figure 6 Calculated Curve for b = —1.5 and r, =
93.8¢cm

all of the methods agree well with the real curve.
This is as expected because, with this long of a ra-
dius, the original Hassler-Brunner assumptions for
A and B are very good.

The actual cause for the disagreement between
the linear interpolation results and the real curve
was traced to problems in evaluating the derivative

d(s 2)
iz |,

By using a data set with approximately three times
as many data pairs in the lower capillary pressure
range, the results in Figure 7 were obtained. The
greater number of data points allowed a more accu-
rate determination of the slope of the experimental
data. The improvement in the linear interpolation
results is obvious, while the predictions of the other
methods are essentially unchanged.

In order to further evaluate the linear interpo-
lation method, the test data published by Skuse
(n.d), as well as three sets of new data, were anal-



ysed by both the linear interpolation method and
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Figure 7 Calculated Curve for b = —1.5 and Dense
Data

the Bentsen method. The results for Skuse’s data
are presented in Figure 8. Overall, the agreement
between the two data analysis methods is excellent.
The Bentsen results appear to give a best fit curve
through the points predicted by the linear interpo-
lation method.
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Figure 8 Skuse’s Data

The three new data sets were all obtained during
a single centrifuge run. The properties of the sam-
ples are listed in Table 2; they represent a wide
variation of rock type and permeability. No at-
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tempt was made to optimize the experiment — a

TABLE 2 Sample Parameters

# Type k ¢
(md)

1 Dolostone 18.05 0.297

2 Brownstone 1703 0.244

3 Berea Grit 83.77 0.168

speed schedule was specified, and the schedule was
followed regardless of the productions that were ob-
served. Even with this non-optimal test procedure,
the results for the two analysis methods, presented
in Figures 9 through 11, show a fair amount of
agreement.
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For the dolostone, agreement is good except for
the region near the irreducible saturation. The
reason for this, as previously discussed, is the es-
timation of the derivative. The brownstone sam-
ple shows much poorer agreement. The shape of
this curve is indicative of the low b value cases;
based on previous discussion, poorer agreement is



expected. For exactly the same reason, the Berea
grit data also shows departure near the irreducible
water value.
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Further analysis of the simulated data lead to
a better understanding of some of the discrepan-
cies. It was found that the quality of the linear
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interpolation method results improves significantly
if all of the data points are taken before the water
saturation at the inner face of the core sample ap-
proached its irreducible value. For the experimental
samples, this was true in only the dolstone case. On
the other hand, the Bentsen parameter estimation
technique was found to be far less sensitive to this
restriction, giving similar curves regardless of when
the data was taken relative to the inner face water
saturation, provided that some of the data points
are taken at high saturations. However, predicted
curves were more consistent if more data with high
inner face water saturations were used.

The Bentsen method and the linear interpola-
tion method are based on different philosophies.
The former recognizes explicitly the inherent un-
certainty of any evaluation technique and assumes
a smoothed curve from the outset. This approach
has the advantage of being less sensitive to data
scatter and experimental error; it has the disadvan-
tage of being insensitive to capillary pressure curves
which have an inherently different shape than that
assumed. The linear interpolation method is more
sensitive to errors in the data, but does not pre-
suppose a shape. In the differences between the
methods, lies the reason for always analysing the
data by both methods and comparing the results.
In this way a more complete evaluation of the data
can be made. Systematic variations between the
predicted curves, particularly at high water satura-
tions, may indicate shapes of the curve which do
not conform to the assumed Bentsen model. Scat-
ter of the linear interpolation method results about
the Bentsen curve, such as in the case of Skuse’s
data, is a reflection of scatter in the experimental
data.

An evaluation of the accuracy of the various data
analysis methods can be made by using the cap-
illary pressure curves resulting from the analyses
to predict new sets of simulated production ver-
sus speed data. The differences between these pre-
dicted data sets and the original simulated data
set provide a direct measure of experimental error.
A root-mean-squared error can be calculated and
compared with the error of observation in reading
the centrifuge (£0.15 cc). In Figure 12, the results



of such an analysis are shown as functions of the
curve shape parameter (b/a). The seemingly good
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Figure 12 RMSE as a Function of Shape

performance of the Hassler-Brunner method at low
(b/a) values is actually an artifact of two large er-
rors cancelling each other. For all cases, the linear
interpolation method yields results which are ‘ex-
act’ to within the experimental error.

CONCLUSIONS

The present work supports the following conclu-
sions:

1. The linear interpolation method provides an ac-
curate solution to the Hassler-Brunner equation.

2. The linear interpolation method is a differential
method and the results are sensitive to the qual-
ity of the data upon which the differentials are
based.

3. The linear interpolation method requires that all
of the data be taken before the inner face of the
core attains the irreducible water saturation.
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4. The Bentsen technique does not have the limi-
tation of Conclusion 3. However, data quality
is improved if most of the data is taken before
the inner face of the core attains the irreducible
water saturation.

5. Data analysis should not rely on one method,
but should make use of different methods to en-
sure that a proper interpretation of the data is
achieved.
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NOMENCLATURE
Symbol Defintion
a,b,c Constants
A, B Constants
Cij, Dij, E;; Constants
P, Capillary pressure
P, P, at r;
r Radius from center of rotation
r; r at top of sample
To r at bottom of sample
S Saturation
S Mean saturation
Sr1 S of displaced phase
Sr2 S of injected phase
Va Displaced volume
Vo Original volume of displaced phase
| Pore volume
Z P (]
Ap Density difference
w Rotational speed
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