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Abstract Experimental investigation has been carried out to
examine critical velocities at which transition from laminar
to non-Darcy flow of gases take place. The critical velocities
were evaluated from back-pressure plots of pressure gradient
against flow rates. Incorporating the gas slippage effects
into these plots resulted in significantly higher critical
velocities. The critical velocities were found to be related
petrophysically to the permeability, porosity and pore
structure of the sample.

INTRODUCTION

Determination of the «critical velocity at which gases flowing
through a porous medium start to deviate from Darcy’s law is of
interest to core analysis as well as gas reservoir engineering.
During fluid flow through narrow pipes or capillaries, it is well
known that a very rapid transition from laminar to turbulent flow
can occur depending on the Reynolds number of the flow (Re =
pvd/u). The critical value is generally accepted to be around Re
= 2000. It would be wuseful to find such a critical Reynolds
nunber for flow in porous media, eg. in the interpretation of
experimental flow data or to estimate the region where non-Darcy
effects would become significant in high rate gas wells. The
purpose of this work is to provide a method by which this
transition rate could be estimated.

FLOW REGIMES

Due to the wide distribution of pore sizes and shapes in any
naturally occuring porous medium, it is possible for two more
different modes of flow to coexist simultaneously. The difficulty
of describing the transition rates between two modes of flow is
therefore obvious. It is nevertheless possible to divide flow in
porous media into a number of broad catagories. This is not a
matter of semantics alone, since a different mathematical
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expression may be required for the best description of each mode
of flow. Some of the various types of flow in porous media and
the equations used to described them are:

diffusional flow (Knudsen equation)

molecular slip flow (Klinkenberg equation)
viscous flow (Darcy’s law)

visco-inertial flow (a transition region)
inertial dominated flow (Forchheimer equation)
inertial/turbulence transitional region
turbulent flow {a cubic equation)
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There are many other types of flow where Darcy’s law would be
inapplicable. These will however not be discussed here (see
Scheidegger, 1974; Bear, 1972). The present study will focus on
the transition from viscous (linear) to inertial dominated (non-
linear) flow, usually known as the ‘non-Darcy’ flow region.

Experimental observation using laser doppler anemometry (Dybbs et
al, 1984) on porous media consisting of glass bead packs has
shown that in the Darcy regime, where the flow is dominated by
viscous forces, the exact nature of the flow is determined by the
local geometry of pore spaces. This type of flow has been found
to be valid for Re<l, where the value of Re was based on average
pore size and the average pore velocity. At Re=1, boundary layers
were found to develop near the solid boundaries of the pore. A
transition region was found to occur at Re between 1 and 10 where
the flow changed from purely viscous to inertial dominated. Here
the boundary layers became more pronounced and an "inertial core"
appeared. The developement of these "core" flow outside the
boundary layers was found to be the cause for a nonlinear
relationship between the pressure gradient and the flow rate.
This nonlinear flow relationship persisted to a Re of 200. Flow
in the range 200<Re<350 was of an unsteady laminar type, which
was characterised by laminar wake oscillations in the region
200<Re<300 and was followed by the formation of vortices in the
range 300<Re<350. Thereafter, at Re>350, a highly unsteady and
chaotic flow pattern ensued which resembled turbulent flow.

It is important to remember that for consolidated porous media,
the transitional flow rates may be quite different due to the
complexity and heterogeneity of the pore structure. The general
trend of flow regimes as described above would however be
expected to hold for many types of porous media.

THEORY

The permeability of a porous medium is evaluated £rom the
definition of Darcy’s law. PFor flow of gases, since the
volumetric flow rate varies with pressure, it is necessary to use
either an integrated form of the equation or alternatively an
average value of the flow rate. If an average pressure is used,
the volume at mean pressure has to be converted to a volume
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measured at one atmosphere, so that Darcy’s law may be expressed
as

Q = KA(P,*-P,?)/2uZP,L (1)

where P, is the reference pressure and P,, P, are the upstream
and downstream pressures. This equation however cannot be used to
determine the permeability of porous media using gas. This is
because gas molecules.are affected by the 'slippage’ effect, as
the mean free path of the molecules approach the dimension of the
pore openings. From consideration of gas flow through straight
capillaries, Klinkenberg (1941) showed that the permeability of
gas could be expressed as :

K, = Ky (l+dch/r) (2)

where ¢ is a constant. Since the mean free path, A, is inversely
proportional to P, and r, a characteristic length scale
describing the medium, is a constant, Equation (2) could be
rewritten as :

K, = K (l+b/Py) (3)

Equation (3) shows that if the apparant permeability, K,, is
plotted against the inverse of mean pressure, P,, a straight line
can be obtained, the intercept of which will give the true gas
permeability and is eqivalent to the permeability K; which would
be obtained by flowing a liquid through the medium. The intercept
is essentially an extrapolation of the apparant permeabilities to
an infinite mean pressure.

As the gas flow rate is increased in a core sample, deviation
from Darcy’s law begin to take place due to inertial forces
becoming more dominant than the viscous forces. An equation for
describing flow at the inertial dominated regime was first
proposed by Forchheimer (1901), and can be written as:

~-WP=auv+Bp V2 (4)

where o is the viscous resistance coefficient, and is egivalent
to the inverse of permeability at low flow rates (ie. Darcy’s
law), and B is the inertial resistance coefficient. The viscous
and inertial coefficients are independent of the fluid properties
and depend only on the nature of the porous medium.

I the Forchheimer equation, the first term represents the
pressure drop due to the viscous forces and the second term that
due to inertial forces. Since Reynolds number is the ratio of the
inertial to viscous forces, it was suggested (Green et al, 1951)
that the Reynolds number for a porous medium could be represented
by

Re = pv(B/a)/u (5)
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The characteristic length scale of the porous media is therefore
represented by the term B/«, ie. PBK. This definition has been
used widely in the literature (Geertsma, 1974; Ahmed et al, 1969;
Wright, 1968, etc). The present experimental work suggest that
this definition may be incorrect for representing the
characteristic length scale, as will be discussed below.

An alternative to using the Reynolds number is to use the Darcy’s
law directly to determine the flow rate for the onset of
deviation. Since the absolute permeability for a porous medium is
a constant and wZ is approximately constant for the low pressures
used in most experiments, then, according to Equation (1) a plot
of the pressure drop squared against flow rate should yield a
straight line passing through the origin. Any deviation from this
line will indicate a departure from Darcy’s law. The flow rate at
which this departure will occur can be expected to be a unique
value dependent on the pore structure of the media and the fluid
used. A typical plot of pressure drop against flow rate is shown
in Figure 3. The plot confirms our expectation and a departure
from the straight line is observed as the flow rate increases.
Comparison of the flow rate at which departure occurs with the
Klinkenberg plots (Figure 1) for the same sample, it was found
that the departure from the straight 1line occured much earlier
than was expected. It was then realised that Darcy’s law as
expressed in Equation (1) should not be used directly since the
permeability is actually not the absolute one but an apparant
value affected by slippage at low pressures. It is possible to
account for this slippage (Dranchuk et al, 1969) by substituting
the Klinkenberg equation into the Darcy’s equation, which then
becomes

Q= KA (l+b/P,) (P;2-P,2) (6)
2uZP, L

The permeability in the above equation is now the absolute value
and is equivalent to the liquid permeability, K;. According to
this modified form of Darcy’s law, a plot of (1+b/P,)(P,;2-P,2)
against the flow rate would yield a straight line passing through
the origin since all other terms in the equation remain constant.
This is indeed found to be the case, as shown in Figure 4.
Departure from the straight line occurs at increasingly higher
flow rates.

EXPERIMENTAL

Porosity of 23 core plugs aquired from a number of wells in the
North Sea area were measured using the helium gas expansion
technique.

Permeability of these samples were measured by flowing air at
various flow rates and plotting the data according to
Klinkenberg’s formula. The slippage "correction factors", b, in
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Equation (3), were calculated from the slope of the Klinkenberg
plots. A typical plot is shown in Figure 1.

The inertial coefficient, B, was calculated by plotting the flow
data according to an intergrated form of the Forchheimer equation
{Dranchuk et al, 1968) which may be expressed as

(Py2-P,2)M = WB + 1 (7)
2ZRTuL(W/A) Au K

By plotting the left hand side against (W/Au) the value of B8
could be obtained as the gradient of the slope. A typical plot is
shown in Figure 2. Results of these measurement are shown in
Table 1.

The results of the flow tests were plotted according to Darcy’s
law for gas, ie. pressure drop squared against flow rate. One
such plot is shown in Figure 3., The flow data with pressure
gradients modified to take account of slippage (Equation 6) were
also plotted; an example of this is shown in Figure 2. The onset
of deviation from Darcy’s law was estimated from these plots in
both cases and are reported in Table 1. The final column in Table
1 is the flow rate at the onset of deviation per unit cross
sectional area (in cm/sec).

DISCUSSION

In both the Klinkenberg and Forchheimer type of plots, the data
points show a downward warp (see Figures 1 and 2). In the former,
this is due to inertial effect becoming significant at high flow
rates and in the latter this is due to gas slippage effect
becoming important at the lower flow rates. In the case of
Klinkenberg plots it may be necessary to impose some back
pressure while being able to vary the mean pressure to be able to
obtain a straight line. Otherwise inertial effects may start to
become significant and a straight 1line drawn through any set of
data points will give erroneous results. In the case of
Forchheimer plots, it is necessary to have a sufficiently high
flow rate (and mean pressure) to minimise gas slippage effects.

If the deviation from Darcy’s law is assumed to take place at a
Reynolds number of one (as 1is generally assumed in the
literature), then the critical flow rate for deviation from
Darcy’s law can be predicted directly from the definition of
Reynolds number. Equation (5) could then be rewritten as:

v = Adu/pd (8)
where
d = BK

The porosity term ¢ is introduced to ensure that the Reynolds
number is based on the interstitial velocity of the fluid and not
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calculated assuming that the flow takes place across the whole
cross section of the sample, as is often done in the literature.

The observed critical velocities are shown in Table 2 along with
those calculated using the above equation, ie. assuming that the
transition occurs at a Re=l. The calculated critical flow
velocities are generally found to be much 1larger than the
experimentally observed values - sometimes by as much as two
orders of magnitude. The difference between the observed and the
calculated values generally increase as the permeability of the
sample decrease. These results suggest that for rocks of moderate
permeability (10-100 md) the critical Reynolds number, as defined
in Equation (5), could indeed be around 1. For rocks of lower
permeability (1-10 md) the critical Re would be around 0.1, and
for rocks with permeability in the range 0.1-1 md, the critical
Re is likely to be around 0.05. The Reynolds number as calculated
from the experimentally determined critical velocities (using
Equation 5) are shown in the final column of Table 2 for
comparision. It should be noted that as permeability decreases,
the pore structure also tend to become more complicated, eg. due
to the growth of authigenic clays. This therefore helps to bring
the nonlinear mode of flow much earlier than for high
permeability samples.

At a given scale of observation it is reasonable to expect that
as the permeability of a rock sample increases, so its mean pore
size will also increase. The characteristic length parameter, d
{(=B/a) in the Reynolds number, as defined by Green et al (1951)
should therefore become larger with increasing permeability.
Values of d were calculated for a number of samples and plotted
against their permeability to verify this assumption (Figure 5).
Although the data has a wide scatter, the trend is obviously
downwards. The plot shows that the -characteristic length, d,
decreases with increasing permeability, which is contrary to
expectation. This therefore brings into question the validity of
using the definition proposed by Green et al (1951). The above
discussion shows that there is no simple or unique way of
defining a suitable 1length parameter which will characterise a
porous medium and could be used in the Reynolds number. It
therefore seems that the best way of finding the transitional
flow rate is to plot the flow data according to Equation (6).

Comparision of plots according to Eguations (1) and (6) showed
that the delay in the onset of deviation from a straight line was
generally much higher for lower permeability plugs - sometimes by
as much as 20 times. For high permeability samples this may not
be very significant. For instance, in a core plug of
permeability about 100 md, inclusion of the slippage correction
term changed the critical flow by only about 5%. This seems to be
reasonable since slippage is more prominent in low permeability
core samples.

Using the modified pressure gradient against £flow rate plots,
the onset of deviation from Darcy’s law was found for the core
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plugs and are reported in Table 1. It was found that the flow
rates at the onset of deviation from Darcy’s law could be
correlated to the permeability of the rock sample. A plot of the
critical flow rates versus permeability is shown in Figure 6 .
The scatter in the data shows that in addition to permeability,
there are other pore structural parameters causing the transition
from laminar to non-Darcy flow to occur. The plot suggests that
the critical flow velocity is a unique value for the medium and
for the particular fluid used. It was possible to obtain a
better correlation when the critical flow velocities were plotted
against {(k/¢), as shown in Figure 7, since this parameter
provides a better characterisation of the pore structure.

There is a considerable amount of evidence in the literature to
suggest that the critical velocity for transition is strongly
dependent on the pore structure of the media (Houpert, 1959).
Fancher et al (1933) for instance, studied the deviation from
Darcy’s law at high rates by a series of systematic experiments
and found that for wunconsolidated sands, a plot of the Fanning
Friction factor against Reynolds number (using the grain size)
can be used to draw a single line for all data points. However
for consolidated media, a definite 1line was observed for each
media. They explained that this was due to the size and shape of
pores in a consolidated medium, and also due to the amount and
arrangement of cementing materials and the degree of angularity
of sand grains. Of these they found from experiments that the
amount and arrangement of cementing materials was the most
significant.

Others have carried out experiments using glass bead packs to
observe the transition from laminar to fully turbulent flow.
McFarland et al (1976) used packs with bead diameters of 0.25 and
0.5 inches and the packing arrangements of cubic and orthorhombic
type. Their results show that the Reynolds number (based on grain
size) for the transition to turbulence changes 10 folds if the
packing arrangement is changed and by 20 folds if the diameter is
also changed. Blick (1966) has also carried out experimental work
and suggests that the slight discrepency between his proposed
theory and his experimental observations is due to the way in
which mean pore diameter is defined and measured. He suggests
that incorporation of pore size distribution data from capillary
pressure curves might be the path to an improved description.
Various researchers have also attempted to incorporate ’shape
factors’ for describing flow through porous media. These shape
factors however have to be determined empirically.

CONCLUSIONS

It has not been possible to adequately describe the transition
from laminar flow to inertial dominated flow by the use of
Reynolds number. This is because the Reynolds number requires a
characteristic length parameter, which cannot be described
accurately due to the difficulty of quantifying the pore
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structure in naturally occuring porous media. Conventional
definition of the characteristic length wusing (B/a) may be
incorrect since current experimental results show that it
decreases with increasing permeability.

To able to define the onset of non-Darcy flow it is necessary to
carry out flow measurements on the core material of interest and
to plot the data according to Equation (6). This equation is a
modified form of the Darcy’s law which takes into account the gas
slippage effect. Critical gas velocities can be found from the
onset of deviation from a straight line according to this type
of plot. Critical velocity measured in this manner is found to be
a unique function of the medium, and is dependent on its
porosity, permeability and the pore structure.

It was possible to obtain a very good correlation between the
critical velocity and the permeability of the core samples
investigated in this study. An improvement in the correlation
could be obtained between the critical velocities and the
parameter {(k/¢).
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NOMENCLATURE

cross—-sectional area, L2

characteristic length in Reynolds number, L
permeability, L?

length of the core sample, L

molecular weight of gas

pressure, M/LT?

volumetric flow rate, L3 /T

universal gas constant

absolute temperature

fluid velocity, L/T

mass flow rate, M/T

gas compressibility factor

coefficient of viscous flow resistance, 1/L?
coefficient of inertial flow resistance, 1/L
density, M/L3

porosity

gas viscosity, M/LT
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TABLE 1
Flow rate data

Sample k ¢ Bk v k/ Flowrate  Modified  Velocity
(md) (%) (um) (md) (cc/s) (cc/s) (cmy/s)
M11001 59.0 20.76 71.23 16.86 35 170 341
M11002 2.18 13.82 1080. 397 0.35 32 0.64
M11005 0.98 10.19 4210. 3.10 0.15 10 0.20
M11008 123 12.74 972. 3.11 03 0.6 0.12
LE253 041 743 106.6 23S 0.16 0.65 0.13
LE718 0.041 6.83 382.6 0.77 0.042 0.065 0.013
LE728 0.26 11.39 7223 1.51 0.14 0.35 0.07
RHS%4 221 12.17 1254 4.26 0.19 14 0.28
RH97 17 16.92 112.7 10.02 1.10 50 1.0
RH99 59 14.90 142.8 6.29 0.80 35 0.70
RH101 0.14 587 36424 1.54 0.03 0.07 0.014
RH103 0.23 9.96 852.7 1.52 0.052 0.40 0.08
M73001 0.064 12.31 9010 0.71 0.01 0.10 0.02
M73002 0.10 11.50 5880 0.94 0.015 0.11 0.02
M73003 0.46 10.01 1320 2.14 0.025 030 0.06
M73004 0.51 110 1240 2.16 0.03 0.65 0.13
M73005 330 210 56.7 12.54 0.55 10.0 20
MT73006 152 20.5 589 8.61 035 9.0 1.8
M73007 10.5 209 69.9 7.09 0.25 4.0 0.8
M73008 13.0 239 46.5 737 0.5 8.5 1.7
M73009 32.5 25.6 284 11.27 0.95 150 3.0
M73012 284 19.6 599 12.04 0.90 8.5 1.7
M73013 20.8 19.01 56.2 1046 045 8.0 1.6



Reynolds number at critical velocities

TABLE 2

Critical Velocities (cm/s)

457

Sample permeability observed calculated Re
(md) @Re=1

M11001 59.0, 341 8.57 0.40
M11002 2.18 0.64 0.56 1.14
M11005 098 0.20 0.14 1.43
M11008 1.23 0.12 0.63 0.19
LE253 041 0.13 573 0.023
LE718 0.041 0.013 1.60 0081
LE728 0.26 0.07 0.85 0.083
RH94 221 0.28 4.87 0.057
RH97 17.0 1.0 542 0.18
RH99 59 0.70 428 0.16
RH101 0.14 0.014 0.17 0.083
RH103 0.23 0.08 0.72 0.11
M73001 0.064 0.02 0.068 0.29
M73002 0.012 0.02 0.10 0.19
M73003 0.46 0.06 0.46 0.13
M73004 0.51 0.13 0.49 0.26
M73005 33.0 2.0 10.77 0.19
M73006 152 1.8 10.37 0.17
M73007 10.5 0.8 8.74 0.09
M73008 13.0 1.7 13.13 0.13
M73009 325 3.0 21.50 0.14
M73012 284 1.7 10.19 0.17
M73013 13.0 1.6 10.87 0.15
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