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SIMPLE AND ACCURATE METHODS FOR CONVERTING CENTRIFUGE DATA INTO
DRAINAGE AND IMBIBITION CAPILLARY PRESSURE CURVES
P. Forbes, Institut Frangais du Pétrole, 1-4 ave. de Bois Préau, 92500, Rueil-Malmaison, France.

ABSTRACT

There are various methods to reduce drainage
centrifuge data to capillary pressure curves. Simple
methods usually lead to poor accuracy in the results, while
accurate methods, usually longer to operate, need to
smooth, fit, average or force the experimental data in a
given analytical form . This could be questionable and lead
to significant errors in computed capillary pressure curves
and consequently in computed irreducible saturation.

This paper first deals with an accurate method
which is rapid to process, if the drawbacks of fitting the
data in a given analytical form are accepted. The method
also allows the corrected USBM wettability index to be
calculated easily directly from the raw centrifuge data.

Second an accurate, very rapid and simple method
is proposed. It allows to convert experimental data, even if
they are noisy or few. It needs no smoothing, fitting,
averaging or forcing of data, or of result, in any given
form. Therefore it is believed to produce capillary pressure
curves which correspond more closely to the centrifuge
data than the curves which may be obtained from most
other methods. The method applies to both drainage and
imbibition centrifuge data. It is even simpler for
imbibition.

Our first and second methods are demonstrated on
both artificially generated and experimental data.

INTRODUCTION

The centrifuge has been extensively used to
determine capillary pressure curves, Pc(S), for core
samples since Hassler and Brunner [1] and Slobod et al. [2]
formulated the theory and practice of the method. It is,
however, still problematic as it requires the transformation
of the centrifuge fluid production data into local saturation
values. The transformation is related to assumptions on
the physics of fluid displacement during centrifuging and
to the inversion of a fundamental equation between local
saturation S(Pc¢) and experimental centrifuge data [1].

The validity of physical assumptions (outflow
capillary boundary condition, no cavitation, equilibrium
time value, end-piece effects, homogeneity of the core,
etc.) was recently reviewed by O'Meara et al. [3] and
Hirasaki et al.[4]. We do not discuss these problems here
but focus only on the solution of the fundamental
equation,

The centrifuge method consists in measuring
average saturation S versus capillary pressure Pcl at the
inlet face of a sample (Fig. 1) at equilibrium during
rotation at various angular velocities .

From Hassler and Brunner [1] to Hermanssen et
al. [5] more regently, the formulation of the mathematical
link between S(Pc1) and local saturation S(Pc) can be
summarized as follows: the main assumptions are that
hydrostatic equilibrium is reached in each phase and that
boundary condition Pc=0 is effective at the outflow face.

For drainage experiments (wetting phase
saturation decreasing) capillary pressure at a position r is

Pc=1/2 Ap w?(r2-12) . (1

Ap is the difference between the phase densities. Average
n

saturation is related to S by S= = r1) [Smydr . )

Substituting Pc for r from (1) and ehmmatmg Ap 02
from Pclzi- Ap oﬂ(rzz- r12), equation (2) leads to

SEcny=t B 1+\[1—g fsixp—“ld B= 1('1)2 0<B<1 . (3)

vV 1-Bx

For imbibition experiments (wetting phase
saturation increasing) the same equation is obtained when

exchanging r] for r2, B=1—(%)2, and Pc1 for Pc2 [5, 17].

For both drainage and imbibition, the problem consists
therefore in inverting equation (3) to obtain S(p¢) from
S(Pc1), usually known as a finite number of discrete
experimental values.

USUAL SOLUTIONS FOR THE CENTRIFUGE
EQUATION

Numerous papers have proposed wvarious
approximate solutions to equation (3) (see for instance [6]
or [7]). Solutions can be classified into two kinds : those
which require both differentiation and integration and those
which require differentiation only. Approximate solutions
of the second kind are for instance :

S =SHB=S +Pc% Hassler and Brunner [1], @)
S =SH 2VIB S+ P ), Hoffman (8],

1+\/—
- 2\/_ pcdS_

S=Sp =S+
1+V 1- dP 1’

Such solunons can be operated rapidly, from an S
dataset, usir_lg conventional differencing schemes to assess

, van Domselaar [9] .

derivative ([10], for instance). Unfortunately they are

dPcl
accurate only for B<<1 (rj=r). Approximate solutions of
the first kind are more accurate but require additional
integration. This is operated numerically according to
usual numerical calculus by iterative processes or operated
analytically forcing the data in a given analytical form (1,
6, 7, 11 to 17]. Some solutions are accurate only for a
restricted range of B or Pc values. Most are time
consuming or, if they are not, could be questionable
because of the choice of the analytical form which they
use to fit S data. Indeed, as a common feature, the
proposed methods use fitting or smoothing of S datasets
or (and) fitting or averaging of computed solution S. This



is due to the fact that centrifuge equation (3) is a Voltera
equation known to be ill-conditioned [5, 6, 18, 19]. It
increases uncertainties on S which lead to large
oscillations in solution values S. Smoothing and
averaging are then used to prevent such oscillations. _

Indeed the user could choose to force S or S in a
given analytical form. However, the choice of the form is
not contain in raw experimental data and should be
supported by physical consideration, otherwise that could
significantly affect the S values. Figure 2 shows local
curves S(Pc) obtained from a given S dataset when the
data are fit in different analytical forms [6, 17] or
smoothed by the spline-fit technique [13] or when S is
forced in a given form [11]. Depending on the smoothing,
or fitting, the results are significantly different.

In this paper, we will first propose an
approximate solution of the first kind which is rapid to
operate (if the drawback of data fitting is accepted) and has
a practical advantage in evaluating the USBM weitability
index [20, 21, 22]. Second, a direct solution (second kind)
is proposed. The second solution which is accurate for any
Pc and B values and very rapid to operate on S data sets,
will be preferred to the first one which could be an
alternate way of interpretating the data. Both operate for
drainage and forced imbibition data.

FIRST KIND SOLUTION
The following analysis refers to drainage
experiments but can be conducted for imbibition as well.
In order to obtain approximate solution for
equation (3), we operated in analogy with the form of true
analytical solution when it exists. This is the case for B=0
[1] and B=1 [6]. In these cases equation (3) rcduces to:

1
B=0, S(Pcl)— {S(xPc1)dx or S(Pcl) =(1- O)J_((;(P_;?é)d

1

B=1, Spe1y=, JS—(—)dx or S(pe1)=(1- 1/2)me

The last form suggests looking for a solution Sy such as
1

Se1)=(1-v) f Sl@c—ll ®)

in which v, dependmg on B, has to be chosen for equation
(5) reproduces initial equation (3) approximately. It is

shown in Appendix Al that for D—l 1B 227%)
2+vV1B 2r2+r1

difference between equations (3) and (S)is lcss than 0.025,
i.e. it corresponds to an error on S of less than 2.5
saturation units, whatever the B or Pc values (0<B<1 for
drainage). Figure 3a shows the variation in the maximum
value of this difference versus B. Equation (5c) appears o
be an excellent approximation of equation (3). It is also
shown in the appendix that the difference tends to zero as
S tends to the initial saturation Sd. This means that Sy
would be a very good approximation of S for lower Pc
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values, (S=Sd, Pc=~Pd, the threshold pressure), which is a
range for which $ is usually obtained with poor accuracy.

Equation (5¢) is an Abel equation which is
inverted (see Appendix A2) using conventional calculus or
a fractional derivative technique {24], leading to

sin(v TT)
S=Sv=Tvn 4[0.[ St [Pc x

V1B 21 ©
2+\l B 221

Compared to previous solutions, this one also
needs integration and differentiation, but not numerical
inversion of equation (3). As shown in Appendix A3,
integration and differentiation can be removed, i.e. done
analytically, when a subpolynomial form is used to fit S
data. Sy is then obtained as a polynomial function
without any specific numerical treatment.

Integrating equation (6) leads to

Pc Pc

ofsu(x)dx=—§lln_(TD)1:g JS( g Vax | (7

with V=

Pc
Using equation (7), f Sup(x)dx can be calculated directly
0

from S values without computing local S values.

Therefore the method can be used to obtain the corrected

USBM wettability index [20] as simply as the uncorrected
Pc Pc

index (based on | S(x)dx instead of | S(x)dx, [21, 22]).
0 0

The method is now illustrated on artificially
generated S obtained according to equation (3) for different
B values and from

0<Pc<2 : S=1; 2<Pc: S= ——+O 25 16,9,12}.  (8)

Figure 4 shows S and, for several B values, S
curves and corresponding Sy, according to equation (6).
The Sy curves match the actual S curves well, whatever
the B value.

Figure 5 shows the application on a polynomial
fit of an experimental S dataset from Bentsen and Anli
[11]. Again, results are very close to those obtained by
Ayappa et al. [6] applying various methods on the same
fit. The same observation can also be made in Figure 6
showing the processing of data from Glotin et al. {17].

It can be concluded that this first method yields
the same result as the more accurate other methods which
are longer to operate. The computed Sy, is very close to
true local S curves, providing the data smoothing is
convenient. Unfortunately, in actual cases the suitability
of a given smoothing or fitting can not be checked as the
actual S is not available (see Fig. 2). Figure 7 shows an
example in which the fit fails in reconstructing the local
curve. In this example data are generated from the step
function:
0<Pc<1: S=0.9; 1<Pc<4: $=0.4; 4<Pc: S=0.1. 9)



The data fit (continuous line) seems good, the Sy, curve is
also acceptable in shape but differs significantly from the
original S curve (9).

This is why another method unrelated to any
preliminary smoothing or fitting is now presented.

SECOND KIND SOLUTION

As obtained by Ruth and Wong [14] from
numerical computation, it can be noted in several papers
that for drainage experiments, the SHB approximation is
lower than the exact solution, while the Sp
approximation is higher [12, 23]. This is in fact always
true for both drainage and imbibition and can be
demonstrated analytically (Appendix B). We may therefore

write
= .p. S < 2V1B _ dS
SHBSS<Sp or S +Pc <8<S+ Pc (10a)
dPc1 1¥JLB dPc1
or by integration (Appendix B)
1
1 1V1-B

x2V1IBg(xPc1) dx (10b)

1-V1B
S(xPc1)dx>S2| 1
J(XCI)L (+2\/_)

0
Operating now in analogy with inequalities (10b),
we proposed to approximate centrifuge equation (3) by
1

- 1-V1B
Spe1)=(1+00) |x®* S(xPc1) dx, where 0<a<s ———

(Pe1) 2V1-B
according to (10b). (11)

As done previously when choosing v, o has to be taken
as a function of B in order to make (11) close enough to

1N1B_
1+2V1-B

The difference between equations (11) and (3) can be
demonstrated to be less than lhglmax [Sd-S(Pc1)], where
Ihglmax depending on B is plotted in Figure 3b
(Appendix C1). According to the figure, for drainage,
equation (11) would be a good approximation of (3) for
0<B<0.7. A possible approximation of S is therefore the
solution S¢ of

1
1-V1-B

Spc1)=(1+0) |x%S(xPcl) dx, o= )
(Pel) ()J ¢ 142V 1-B

This is inverted easily by differentiation as (Appendix C1):

(3). This is obtained for o = (Appendix C1).

(12a)
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For such S, S, $ ] and Sq can be calculated

analytically. Figures 8 and 9 show S and S¢ for B= 0.1,
0.5, 0.8 and 1.0. Significant differences between the true S
and Sq are observed for 0.7< B <1, while satisfactory
agreements are obtained otherwise.

The S, solution is accurate for B<0.7. Desirable
improvements when 0.7< B <1 can be obtained by
looking for another solution S, which will tend to be

more or less "symmetrical” to Sg with respect to S. More
or less "symmetrical" means that S B will tend to

overestimate S whereas Sg underestimates S and
inversely. Therefore a mere combination of Sy and S

will lead to an accurate approximation of S. Such a S

solution is expected by symmetrizing equation (12a),
replacing S by S (lower than S) and replacing S by a
function related to S and lower than S. SHRB is known to
satisfy this condition (10a) (Appendix B), so that S p can

be looked for as the solution of
1

SB(PC)= 1+B) JxB Sup (xPc) dx (13a),
0

or as the solution of (Appendix C2)
1

— dS
S(pc1)= J( Sﬁ(XPc1)+X1PTT31 d—P%(xPcl)) dx. (13b)
0

Again, B is taken to make (13b) close to
fundamental equation (3) leading to (Appendix C2)

S(e)=Sp(P)=(1+B) XBSHB(xPc)dX pal 2B 1)

e

_ +Sa
Figures 10 and 11 show S, SHB., S, Sa,SB and ‘BT—

curves for B=1.0 for the previous artificially generated S
(Fig. 8, 9). Note the approximate symmetrical shape of
S¢ and SB with respect to S. Note also the close

SE+SQ.
2

For O<B<1 such a close agreement was obtained using

agreement between S, the true solution, and

SaB_ B+[1- 2]5a as the approximate solution of S.

Therefore the corrected solution is summarized as

S(Pe) = SalPe) = SBO) + Ty gpei(PO)
0<B<0.7, drainage . (12b)

For 0.7 < B <1, lhglmax may increase by few
percents and solution S may differ from the true S. This
is illustrated in Figures 8 and 9 for artificially generated
centrifuge data from
0<Pc<2:8=1; 2 <Pc:5=%+ 0.25
and from
0<Pc<2:8=1; 2 <Pc:5=0.3.

_1N1B_
1+2\] 1-B

SaPc)=S(Pc)+ 1+ - chl(PC)
1

SpPo= (1+B) ij SHB (Po) dx , B = 2

g ’ o

S(PC)~S(xB-— ﬁ+[1- ]Sa, 0<B<1, drainage (15)

The solutlon contains integration and
differentiation, as do numerous solutions proposed. But
this solution can be evaluated with high accuracy from




discrete S data, by using a simple differencing scheme (see
[10], for other possible schemes) :

ch11+a§

chl
while according to (A26, Appendix C2), SB(Pc) verifies

According to (15), Sq(Pc) is written as Sg=

S dPc1S dPc1 +BS (16)
I_IB = = .

_ dPc1 _ dPCl B
Let {S;, P;} and {Sj.1, Pj-1} denote two successive pairs
of data (Pj-1< Py). Equations (16) lead to

+a§, 1+(ISl

1 - -

SO‘i-1/2= Pl+0t P1+0L a7
i il

= = 1+B 1+B
BSi. P St Py 7 Spi-PiySpi

1+ _1+P
P, - P PPt

Subscripts i-| , 0<u<1 refer to the value of the

function at pressure Pi- 1 [Pi- Pj-1].
Rearranging (17) the solution is then obtained as:

— P;.
Si - [-i;il—llmsi-l

S
aj.12= 1. [Pi__1]1+a
Pj
1[&1_]143
P11 1+B P = JLi-lis
;= a1 *Psg, v —— (sl-[ L Jsl-l);
1-[Ti]
S ~S 1350 . 42 Sa:.  (18)
i-1/2+B/4~>0Bj- 12484~ L5 1504 1075 9B;

1-V1-B 1271 B2
1+2-\’ 1-B r2+2r1 [0

drainage, 0<B<1, B= 1(—)2

Using this scheme, solution S for the step i is
obtained directly from the values of S at steps i and i-1
and from the value of S at step i-1. No iteration,
smoothing, fitting, numerical integration or specific
numerical treatment are needed. This produces a scheme
that is easy to operate and which can process a current S
dataset in less than one second on a personal computer
(including plotting of input and output).

Validation

First, the applicability of the method is tested on
artificially generated datasets. Figures 12 to 15 show on
one hand different sets of data generated from different
kinds of local S curves according to equation (3) for
different B values ; on the other hand, they show the
corresponding sets of Saf;.1/2+B/4 according to (18). The
matches with initial true S are very good.

Figure 13 shows the method's capability of
reproducing irregular capillary pressure curves. This is not
possible for most usual methods.
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The effect of the number of data points or of the
pressure stepsize is illustrated in Figure 16, where S is
calculated from S datasets with 2, 3, 5, 7 and 10 data. It
appears that the method is not very sensitive to the
number of data points, provided a lower limit of about 5 is
reached.

Second the method is checked against processing
of raw experimental data. As stated in the introduction,
processing of experimental data could lead to oscillations
in calculated S values. To prevent such oscillations we
propose not to use smoothing of S or averaging of S
results, but rather physical constraints such as S. < Sj-l

or constraints deduced from the centrifuge equation itself
such as

P
1-4\[ 1-B,

$.<S. - ]
j _
-vV1B

Combining such controls with the scheme (18)
leads to a rapid and stable method to obtain the local S(Pc)
points from experimental data.

Note that scheme (18) can be reverted leading to
an expression of S; as a function of SqB;_; /2+BJ4 >

[Sd—§j] (Appendix C3). (19)

SaBi-l/2+B/4-1 ,§i .1 and §i _2- This allows the raw
values of {Sgp;} to be changed and the corresponding
effect on those of {§i } to be observed immediately. This

means that when we are operating on noisy data, the
suitability of possible changes due to constraints (19) are
immediately tested by reverting (18) to obtain the
corresponding average saturation S (Fig. 17). This also
means that, if for any other reason (smoothing for
instance) the user wishes to change the solution given by
(18) and (19), he can immediately check agreement
between his changes and the experimental data. The
method is interactive, immediatly linking a given S to the
corresponding S or a given S to the corresponding S.

Figure 17 shows the processing of noisy data
from Bentsen and Anli [11] already appearing in Figure 2.
Our solution is in the range of the different solutions
reported by Bentsen and Anli [11], Ayappa et al. [6],
Glotin et al. [17] and Skuse et al. [13]. Our solution does
not present a shape as regular as the shape of the other
solutions. However, as long as it does not assume any
particular smooth or fit, it is believed to correspond better
to the raw S dataset. The continuous line through the S
data represents the transformation of our solution when
equation (18) is reverted. The solution corresponds quite
well to the S data.

Figures 18 and 19 present drainage data from
sandstone cores from a North Sea field. Our Sof solutions
are compared to the S4 solutions obtained when a
polynomial form is used to fit data (Appendix A3). The
Sqp solutions arc less smoothed than the Sv solution,

but they better account for the irregularity of the S data.
Moreover, the Sgp solutions are obtained much more
rapidly and using simpler computing.



Figure 20 displays the interpretation of data from
Glotin et al. [17] and the corresponding drainage capillary
pressure curve measured by mercury injection. A fair
agreement between our Sgf solution and the mercury
injection curve can be observed.

From these examples, it can be concluded that the
method applies to experimental data even if these data are
noisy or include irregularities. Although simple to
operate, it provides accurate results accounting for detailed
data distribution which, otherwise, could be lost when
smoothing.

IMBIBITION

Although fundamental equation (3) applies also to
forced imbibition, few papers deal with the related theory,
methodology or experimental data [17, 5].

In analogy with what is observed for drainage, we
expect that smoothing, fitting or averaging will lead to the
same drawbacks. For instance, Hermansen et al. {5]
applied an averaging procedure when oscillations take
place in computed S values. Their procedure smooths the
S(Pc) result which apparently becomes suitable in shape
for capillary pressure curves (Fig. 21). However, when
smoothed S values are used to recompute the
corresponding S according to equation (3), a significant
underestimation of the initial S data is obtained (Fig. 21).
Indeed, in this case averaging leads to a result with a
suitable shape which is infact a poorly accurate result.

To prevent such drawbacks, the same Sy, S¢ and
SB solutions proposed for drainage can be similarly

developed, replacing B=1-(%21—)2by B= 1—(%)2.

The proposed solution is even simpler for forced
imbibition, because the error due to the simplest solution,
Sq. is lower than it is for drainage and fairly low whatever
the B value (Fig. 3 ¢).

For forced imbibition an accurate approximate

solution of equation (3) is thercfoie given by

s Pc dS
SPe=Sa(Pe) = SPeI 1, g qper®O) -

oo 1-V1B
1+2V1-B

B<0, imbibition . 20)

This leads to an accurate treatment of S dataset,
using the same differencing scheme already presented for
drainage,

— P;. —
Si- (5% S

Pj.
1- [1_1]1+0L

Pj
1-V1B 112
142V1-B 1212

Si-12750.1/27 ; Sp=Sd;

imbibition, B<O,B=1-(%)2, o= 1)

As for drainage, the scheme is very rapid to operate.

Figures 22 to 25 show different sets of artificial
data generated from different kinds of local S curves
according to equation (3) for different B values, and the
corresponding sets of Sa according to (21). The matches
with initial true S are still very good.
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Figure 25 especially shows that irregular capillary
pressure curves are also reconstructed, and not smoothed,
by scheme (21).

When applying the method to experimental raw
imbibition data, possible oscillations are prevented by
using the following constraints equivalent to those
demonstrated for drainage : S | z Sj-l for P.< Pj-l

j
1- 1-3%
S.>S.- 1 —[Sd -S.], (Appendix C3). (22)
i Pl — j
1-B—= . v 1-B
Pc.

Figures 2J6 to 29 are some examples of applying
the method to experimental data. Figure 26 shows the
treatment of S data from Hermansen et al. [S] already
presented in Figure 21. Our Sqy solution is higher than the
averaged solution found by these authors. However, the
present solution is believed to be more accurate to the
extend that it allows initial S data to be closely
reconstructed when it is tranformed according to (3) (which
is not the case for the averaged solution, Fig. 21).

In Figure 27, the S¢ solution differs slightly
from the solution obtained by Glotin et al. [17] when data
a+bPc

1 +c¢ Pc
that differences occur where the fit does not respect the
initial S data (Fig. 27). Our solution is again believed to
be better as it closely reproduces the data.

Figure 28 shows the application to data related to
packed sand with varying wettability. The Sq solutions
are very close to those obtained when we use the explicit
formula proposed by Glotin et al.[17], similar to Rajan's
approximation. The same observations can be made on
Figure 29.

It can be concluded that the method applies to
forced imbibition with the same speed and accuracy as it
does to drainage.

are fit in a homographic form . It can be noted

CONCLUSION

_ Two methods are proposed to convert centrifuge
data S into drainage or imbibition capillary pressure
curves Pc(S) or S(Pc). Both are demonstrated from
processing of artificially generated or experimental data.
They are rapid to operate, accurate and simpler than
previous methods.

The first method, related to the equation 6, in
practice required the smoothing of the data in a given
analytical form in order to be operated rapidly. Its
drawback is linked to this smoothing, whose suitability
can not be checked, exactly as in other methods using
smoothing, fitting or averaging. Its advantages are that it
leads to continuous capillary pressure curves, with a
regular shape and a related analytical expression. It also
allows the corrected USBM wettability index to be
calculated directly from experimental data.

The second method, related to equations 18 and
21, leads to discrete solutions {Sj}. It is very rapid, simple
and accurate. It can be operated easily on a small personal
computer. It does not require iterative computing,
smoothing, fitting or averaging. It allows data to be



processed even if they are noisy or irregular. It applies
interactively in both ways, from S to S or from S to S.
In practice, this last method is observed to be very
efficient and should be preferred to the first method.

In this paper we also analytically demonstrated
that the Hassler and Brunner solution is always lower than
the true capillary pressure curve, while the van Domselsaar
solution is always higher.

All the results are obtained for both drainage and
forced imbibition.

NOMENCLATURE
Latin r Radial distance from the centrifuge

axis to a point in the centrifuged core
rl r at the inner core face
2 r at the outer core face
Pc  Capillary pressure
Pd  Threshold pressure
Pc1  Pcevaluated atrl
Pc2 Pcevaluated at 12
S Wetting phase saturation
Sd S before Pc reaches Pd
S Average wetting phase saturation
SHB Hassler and Brunner saturation
Sy  Hoffman saturation
Sp  Van Domselaar saturation
Sv  Approximate evaluation of S
Sq.  Approximate evaluation of S
SB Approximate evaluation of S
Sap Approximate evaluation of S

B Dimensionless factor, B=1-[%]2 for
drainage, B=l-[§li]2 for imbibition

x,y Integration variables

3 Parameter for the fit of S and S
bi Parameter for the fit of S
Greek p Phase mass density

Ap  Difference between the phase densities
0] Centrifuge angular velocity

v Parameter related to the Sv solution
o Parameter related to the Sa solution
B Parameter related to the Sg solution
off  Parameter related to the Sp solution
r Usual gamma function

B Usual beta function

gy  Error related to the Sv solution

ript.

o Refers to the threshold pressure
1 Refers to the inner core face

2 Refers to the outer core face

c Capillary

i,j  Counter of data or computed values
) Refers to the Sv solution

o Refers to the Sa solution

B Refers to the SB solution

aff  Refers to the S solution
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APPENDIX

A) First kind solution
1 Formylation
Consider equation (3)

1+\/ﬁ J S(xPel) 4o (A1)

S,
EeD)= 1-Bx

1
Sp(xPcl)

1x)®

_S—(Pc1)= (A2)
1 1
Su(Pel)

v 1+V1.B
S(xPc dx
(1-x)® J( g ((1 SR l-Bx)
0

Integrating by parts on the right hand term, one obtains
1 1

Adding and substracting (l-n)f dx leads to

(1-v)
0

Su(xPcl) ds
Spen=(1 1)) }’1 i Pcthu(x)a;g(xPcl)dx
wherehv(x)_”lfi}‘%_ 1-x)1-, (A3)

In order to disregard the second term on the right-hand side,
1

we will take v to satisfy JhD(x)dx=0. This is obtained
0

1-V1B
24+V1B

due to the disregarded term, has been made by numerically
studying maximun and minimun values for hy(x), 0<x<1.
One obtains that for drainage,

Ihy(x)1<0.03 B115(1-B)0-0575 <0.025 (Fig. 2).

when we let v = Further evaluation of the error

Since chﬁs(;- < 0 and considering that 0<$<1, one can

1
. ds
write [Pc1 [hy(x) E(XPCI) dx|

1
<-0.03 B1.15(1-B)0.0575 Pc1a[%‘-,s—c<xpc1) dx

<0.03 B1.15(1-B)0-0575 [Sd-S(Pc1)] <0.025 (Ad)
Sd refers to the initial value of S before threshold pressure
Pd is reached. Combining with (A3),
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Figure 3d also shows lhy(x)Imax for imbibition (B<0).
Note that the accuracy of the approximation decreases for
B<-4. However, in practical applications B is usually
greater than -2 (see Fig. 26 to 29).

2 Inversion
Consider now solution Sy, of equation (AS), where the €,
function is disregarded : (A6)

1
— Sy(xPcl) 1-V1-B
S =(1- dx,

Peiy ")Of = 2+x/T

Using fractional derivative formalism [24], equation (A6)
—1
_(1-9) . A8y
o1 ol (1-v) V-1 (Pcl),

where I'( y is the usual gamma functlon (A7)

Pc1l-v and
(1-v)I(1-v)
differentiating to fractional order (1-v) with respect to Pcl1,
Suep 1 d1- [pc11-Vg)

WPO)= TR (1) dpcal-v
and rewriting from the definition of fractional derivative
and of the gamma function,

, 0<v<1/2 .

can be rearranged as S(pcl)—

Multiplying both sides of (A7) by

Su(Pe) ?1"(3))7,?‘{6[ S0 [0V dx | (ASa)

sin(vr) 1 ch 1 S
SO(PC)= (1 yyr Pc “dPet
or integrating with respect to Pc,
Pc Pc

[Su0d s 1) a[ S() AV dx | (A80)

) 5, X]l Vix | (A8b)

(I-v)=w

1

1-V1-B
“24V1B

_ S
S(Pe1y=(1-v) f "((1 oo ¢
0

x + Eypet), v

1 €upc1y<0.03B1-15(1-B)0-0575(8d-S(Pe1)1<0.025 (AS)

The same results can be obtained by conventional
calculus by noting that, for any Pc or y,
Pc

T _ I S
sin(v ) ~ (x-y)D(Pc—x)l_D dx (A9)
y

Pc
Multiplying both sides of (A9) by [Sy(x)dx,
0

rearranging the right-hand term as a double integral and
combining with (A6) gives (A8c). (A8a) and (A8b) can be
then deduced by differentiation with respect to Pc.

3 Calculation
Using equation (A8a), Sy can be found
analytically, provided S is expressed in an appropriate
form as:
S(Pc1)=Sd, Pc1 <Pd; (A10)




Pot-Pd -
Sper)=Sd+ oy 110, a; [Pe1-Pd]', Pd<Pel.

Substitating in (A8a), the usual beta function § appears
and Sy, is obtained as
Sv(Pc) = Sd, Pc <Pd;
Su(Pe)=Sd + I, b, a, [Pc-Pd]‘ Pd < Pc. (Al11)
1

b. =
1 [1-v] B(1+i,1-v)
The relation to the beta function can even be removed, for

instance when we restrict i to be (A12)
- i=n, a positive integer, giving b;=b, 11+1i-u, b,=1
. - sin{(v &
-ori=n -1+, giving b=b, , Hl v , by—1 Zlit(lj;t)_

Finally, using (A12) we merely need to fit the values of 3

on S datasets according to (A10), in order to obtain an
analytical expression for Sy according to (A11).

B) SUp < S <Sp
Consider equation (3). When adding and substracting
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1

V1-B
Peil*e |x | [1+ogx® - LB Pci) dx
f ( X ) '——l-B —(x c1)

1

ViB
+alPe1® | sexpen)| [1+ox® - =B gy (A16
J ( 2V 1-Bx x- )

Integrating by parts in the last term and rearranging

1+a g
QE'CI—S—(PQ) = [1+ a] Pc1© S(Pc1)

1

- [1+a] Pcl 1+ana(x)§P%(xPcl)dx (A17)

where go(x) = TAIBX X 1+3 1B
1-ViB 1+ o41Bx
1 1-Vi-Bx 1-[1+2a]\l 1-Bx

I+a 7V1Bx  1-V1-B
Expansion of the left-side derivative and division of both
sides by [1+ o] Pc1% gives

1
S(1='(;)—S(Pc)+1+0L -dP—cl(Pc) + Pc Jga(x) —(xPc) dx

1 1-V1-Bx 1-[1+2(x]\] 1-Bx

where go(x)= - 1+ 1B N1B (A18)
o > -1

1 1
(1+0) |x® S(xPcl)dx : Sper)=(1+0) |x*S(xPcl) dx
0
1
1+V1-B

- | S(xPe1)| (1+ a)x@ - . (A13)

J ( 2V 1-Bx
Integrating by parts on the right-hand term, one obtains

1 1
— ds
S(Pc1)=(1+0,) JXaS(xPcl)dX - PCIU[ha(X) a—Pc_(XPCI)dx
where hg(x) = A BXNIB 140 (A14)
1- \j

Transforming the variable from x to 5 in the first

P 1
integral of equation (A13) we find
Pcl

= 1+ o
S(Pc1)= Dol 140 d{xa S(x) dx

1

V1-B
- sexpen) [ [1+agxe - BB gy AlS
J("”( ol zm) A9

Multiplying by Pc11+® and taking the derivative of both
sides with respect to Pcl, using Leibnizt's rule for
differentiating an integral,

dpc1l+o g
Ldp-cl——s—(pcl) = [1+ o] Pc1® S(Pc1)

Note that equations (A14) and (A18) are equivalent to
centrifuge equation (3) for any o higher than -1.

N1-B
Consider now gg(x) for o= 0 and for o=t 1B
o NiB
¢ ()=- 0NTBx? 1
0 2V1-Bx 1-V1-Bx
g5 = 1"};'3" W1-Bx-V1-B] . (A19)
2V1-B

For drainage, since 0<B<1 we find

go(x)SO and g, y1 g x) 20, 0=x<1.

2V1-B
Similarly for imbibition, B<0 leads to

gO(x) 20and g, 75 () <0,0<x<1.
2V1-B




According togl—)sg < 0, for both drainage (Pc = 0) and
1

imbibition (Pc<0) we obtain Pcd[go(x) %(xPc)dx <0
1

and Pc gl_m(x) %(XPC) dx=>20 . (A20)

2V1-B
0

1-V1-B
2W1B

Combining (A20) with (A18) for a=0 and for ao=""—"7—"—"—

S +ch_S_
dPc1 1+-\1 1-B dPc1

or SHB £ S £Sp

IA
w
IA
w|
+

Rearranging : (A21b)

dPcl

v 1-B-1 1+V1-B

s < 2VIB poi2ViB d lp21B §
1+\le dpcl

(use -Pc2 instead of Pc1 for imbibition)

dPc1S
=== <
dPc1 <8 and

1+\/—— l-‘/_B l+*/—B

d 1B
Pc12Vvi-B S < Pc12V1B S
27 1B dPc1

Integrating with respect to Pc1 and replacing the variable
1
Pcl by xPcl, [S(xPc1)dx>S and
0

1

1-V1-B
§> BB | oVTB sxPel) dx . (A21c)
1B

0
C) Second kind solution

1 S _approximation
We operate on equation (A14) exactly as previously on
equation (A3). In order to disregard the second integral, o

1 1-V1B

is taken to satisfy tho(x)dx=0: o="—"=—
f 142V 1 B

expression for o and disregarding the second integral in
equation (A14) an approximate solution of equation (3) is
obtained as So :

1

. Using this

= 1-V1-B
S =(1 @ Su(xPcl) dx, o =—""1— .(A22
(PCl) ( +a)ojx a(X cl) dx, o 1+2’\]E ( )
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The magnitude of the error introduced by
approximation is assessed numerically by studying the
maximun value for thg(x)l. Figure 3 shows this value

Ihglmax as a function of B (drainage) or %
(imbibition).

Since Pc % < 0 and considering that 0<S<1, we can
write for the integral disregarded between equation (A14)
and equlation (A22):

IPc1G[ha(x)g?sc(xPcl)dxlslhalmax[Sd-S(Pcl)] . (A23)

This means that equation (A22) will be a good
approximation of centrifuge equation (3 or A14) when
lhglmax is fairly low. According to Figure 2 this will be
the case for 0<B<0.7 (drainage) and B<0 (imbibition).

Note that equation (A22) has been inverted in Appendix
B and that the approximate solution is given by :

Sa(Pc) = S(Pe)+ 1f°a %@C)’a_liw\]; (A24)

For 0.7<B<1, accuracy of the S approximation
can be poor. The correction below is proposed.

2 Sqp correction

Inversion of the equation (13a)
1

Consider the equation (13) SB(pc)=(1+B) IXBSHB(xPc)dX-
0

Replacing x with If_c and multiplying by Pc1 148 yields
Pc

pc1l+p SB(PC)= (1+B) J.xB SHB x) dx . (A25)
0

Differentiating both sides with respect to Pc and dividing

by (1+ B) Pcll3 gives (A26)
ds
SR ) = Sup®e) = (PELS @y

Integrating with respect to Pc, one obtains
Pc

— dS
Pcl S(pc1)= f(SB(x) + I:(_—B E‘T)cﬁ(x)) dx . (A27)
0

Replacing x by x Pci leads to equation (13b)
1

= ds
S(Pcl)f(SB(XPcl) + )%CBL d_PC&(XPcl)) dx. (A28)
0

Choice of B value

Centrifuge equation (3) is rearranged on the form
of (A28) when we add and subtract




Pc1
6[(S()(P’(;l)-;. X1+(;3 ch(xPcl))dX
1
§(Pc1)=0"(S(XPcl)+'1x% %(XPCI))dx

1
JS(xPcl)(l'H 'B-l}ho[xf_fg (:lgc(xPcl)dx (A29)
0

Integrating by parts the second term of the right-hand side,
one obtains
1

§(P01)=J(S(XPCI)+% %(XPcl))dx

1

- PCthB(X) %“i‘(XPCI) dx, (A30)
where B(x)—l1 \ll_]ix - T%X
1

As previously, for B satisfying G[hB(x)dx=0, the second

integral is disregarded in (A30) leading to (A31)

1
T e T

mputing on raw_experimental

Converting raw S data into S, according to
equation (3) or equivalent equations can generate
oscillations due to poor accuracy in measured data. Such
oscillations are usually prevented by smoothing, fitting or
averaging which are related to possible drawbacks (see
text). Here, oscillations are prevented by forcing solution
S to satisfy conditions included in the centrifuge equation
itself, _

For drainage, S data are usually sorted in
increasing order of Pc1, while for imbibition they are
sorted in decreasing order of Pc1 :
drainage {S P P>P 1} imbibition {S P P <P. 1}

Since d—(Pc) < 0, a trivial constraint is Sj < Sj-l for

drainage and S 2 S for imbibition.

A second conslramt is obtained when we split
equation (3) into the following two terms : (A32)
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Pd

Pcl
— 1+\/_ (xPcl), . 1+V1B 1+V 1B S(xPclz
S(P cl)= dx.

\/ 1-Bx 2 V1-Bx
Pcl
Since S is constant, Sd, for Pc < Pd, the first integral is
14/ 1 B&
N "Pcl Sd
1_\] 1-B

For drainage, S(xPc1)2S(Pc1), therefore yielding (A33)

1‘\’ lB—Pd
Pcl 1+V1-B
+_._______

_ Schl )
S(pc1)2 —— Sd dx
(PeD) 1-V1-B v 1-Bx
Pcl
Integrating and rearranging
B 1 B% B
S(Pc1)<S(Pcl)- {Sd - S(Pc1)] . (A34)
V1B
This leads to
Pd
B 1- 1—BPCi B
S.<S.- [Sd- S.] . (A35)
) ) Pd - J
1-B—= . vV 1.B
ch
Similarly, for imbibition we obtain
1- 1-B&
— Pci —_
S.>S. - [Sd-S.] . (A36)
J ) Pd I J
1-B-—=. vV 1B
Pc.
J
FIGURES
Pc2 Pc Pcl I

Figure 1 : Scheme of the centrifuge method.
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Figure 2 : Interpretation of experimental data (0) from
Bentsen and Anli [11], when one assumes a power law
{17) or a polynomial [6] dependence for saturation,
smooths the data using a spline-fit technique [13], or
forces the result in an exponential form [11].
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Figure 3 : Maximun error on S when we change
centrifuge equation (3), in equation (5¢) for drainage or
imbibition [a, d], in equation (12a) for drainage [3b] and
in equation (12a) for imbibition [3c].
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Figure 4 : Interpretation of artificially generated data.
Points represent datasets generated for different B
values, according to the equation (3) and assuming the
capillary pressure curve is (continuous line) 0<Pc<2:
S=1; 2<Pc: §=0.25 + 1.5/Pc . Dashed lines show data
fits and the corresponding S,, approximations.
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Figure 5 : Interpretation of smoothed experimental data
(0) from Bentsen and Anli [11]. Continuous lines show
smoothing of data and corresponding Sy,. The black
points depict the solutions given by Ayappa et al. [6]
applying various methods to the same smoothing.
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Figure 6 : Interpretation of smoothed experimental data
(0) from Glotin et al. [17] (fimestone). Continuous lines
show smoothing of data and corresponding Syy. Black
points depict the solution given by Glotin et al. [17]
when data are forced in a power law dependence.
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Figure 7 : Interpretation of artificially data (0) generated
for : 0<Pc<1 : $=0.9; 1<Pc<4 : S=0.4; 4<Pc : S=0.1 The
continuous line depicts the subpolynomial fit of the data
(see text). The thick dashed line is corresponding Sy, and
the light dashed line the initial step function.
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Figure 8 : Interpretation of artificially generated data. The
higher lines represent data generated for different B
values according to equation (3) and assuming the
capillary pressure curve is (thick line) 0<Pc<2: S=1;
2<Pc: S=0.25 + 1.5/Pc. The lower lines show the
corresponding Sq, approximation (see text).
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Figure 9 : Interpretation of artificially generated data.
The higher lines represent data generated for different
B values according to equation (3) and assuming the
capillary pressure curve is (thick line) 0<Pc<2: S=1 ;
2<Pc : $=0.3. The lower lines show the corresponding

S approximation (see text).
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Figure 10 : Interpretation of artificially generated data.
The higher line represents data generated for B=1
according to equation (3) and assuming the capillary
pressure curve is (thick line) 0<Pc<2: S=1; 2<Pc: §=0.25
+1.5/Pc. The lower lines show corresponding SHB Sa. SB
and (Sq+SB)/2 approximations (see text).
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Figure 11 : Interpretation of artificially generated data.
The higher line represents data generated for B=1
according to the equation (3) and assuming the capillary
pressure curve is (thick line) 0<Pc<2: S=1; 2<Pc: $=0.3.
The lower lines show corresponding SHB S, SB and
(S +SB)/2 approximations (see text).
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Figure 12 : Interpretation of artificially generated

datasets. {Si} data are generated for different B values
according to equation (3) and assuming the capillary
pressure curve is (thick line) 0<Pc<2: S=1; 2<Pc:
$=0.25 + 1.5/Pc. The left-hand points are the
corresponding S sets (see text).
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Figure 13 : Interpretation of artificially generated
datasets.{Si} data are generated for different B values
according to equation (3) for a step function (continuous
line), 0<Pc<1: S=0.9; 1<Pc<4 : §=0.5; 4<Pc: $=0.2. The
left-hand points are corresponding Sy sets.
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Figure 14 : Interpretation of artificially generated

datasets. {Si} data are generated for different B values
according to equation (3), for S=1-Pc (continuous line).
The left-hand points are the corresponding Sy 3 sets.
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for S=0.1+ 0.9 ¢ 06 (continuous line). The left-

hand points are corresponding S f3 sets.
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Figure 16 : Effect of number of data points and stepsize.
The right-hand points represent sets of different numbers
of data (and different stepsize values) generated for
B=0.7 according to equation (3) and assuming the
capillary pressure curve is (thick line) 0<Pc<2: S=I;
2<Pc: §=0.25 + 1.5/Pc. The left-hand points are
corresponding Sy f3 sets (see text).
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Figure 17 ; Interpretation of raw, noisy experimental data
(0) from Bentsen and Anli [11]. The black points
represent the corresponding Sqf solution. Other
solutions [6,11,13,17] are given for comparison (Fig. 2).
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Figure 20 : Interpretation of experimental data () by
Glotin et al. ([17], Berea sandstone). The black points
depict the S solution. The curve shows the capillary

pressure measured by mercury injection [17].

Capillary pressure (mbar)
4000

o)
*
3000 -
B=0.801
(o]
2000 1 o
e © * {Saﬁi]
10001 ¢ © —
¢ 30s))
S 0.00 i Synthetic formation
> R brine saturation
0 ,____,_‘_;0@_—0—1,_:050_,0_0_.0
0,2 04 0,6 0.8 1

Figure 18 : Interpretation of experimental data (0) from a
North Sea sandstone core (air and synthetic formation
brine). The black points depict the SR solution and the
continuous line represents the Sy, solution.
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Figure 21 : Imbibition data (¢) from Hermansen et al. [5]
(North Sea sandstone). The S(Pc) solution proposed by
these authors is shown before averaging (black squares)
and after averaging (triangles). The continuous line is a
smooth of their averaged solution and the dashed line is
the corresponding average saturation according to (3).
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Figure 19: Interpretation of experimental data (0) from an
North Sea sandstone core. The black points depict the
Sop solution and the curve shows the Sy, solution.
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Interpretation of artificially generated
datasets. The left-hand points represent data generated
for different B values according to equation (3), for
S=-Pc (continuous line). The right-hand points

are corresponding Sy sets (see text).
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Figure 23 : Interpretation of artificially generated

datasets. The left-hand points represent data generated

for different B values according to equation (3), for

0>Pc=-0.001: $=0.1; Pc<-0.001: S=01+0.1Log-1000 R]

(line). The right-hand points are corresponding Sy
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Figure 24 : Interpretation of artificially generated
datasets. The left-hand points represent data generated
for different B values according to equation (3) for
$=0.85+1.5/(Pc-2) (continuous line). The right-hand
points are corresponding S¢y sets (see text).
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Figure 25 : Interpretation of artificially generated datasets.

The left-hand points represent data generated for

different B values according to equation (3) for step

function 02Pc>-1: §=0.1; -1>Pc=-4: §=0.5; Pc<-4 :

S=0.2 (continuous line). The right-hand points are the
corresponding S sets (see text).
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Figure 26 : Imbibition data (0) from Hermansen et al. [5].
The dashed line is these authors' averaged solution (Fig.
21). The black squares depict the S¢ solution.

Figure 27 : Imbibition data (0) from Glotin et al. {17)
(Berea sandstone). The continuous line is the fit used by
these authors to obtain capillary pressure curve (dashed
line). The black squares depict the S solution.
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Figure 28 : Imbibition data (0) from packed-sand samples
with intermediate wettability. The lines are the solutions

obtained when a Rajan-type approximation [17] is used.
The black squares show S solutions.
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Figure 29 : Interpretation of imbibition data (0) from a
carbonate core sample. The line is the solution obtained
when equation (3) is solved with a Rajan approximation

[17]. The black squares show the Sg solution.







