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Abstract Biot’s theory, which couples fluid flow and rock de-
formation, is investigated from the petrophysicist standpoint.
The rock deformation contribution to the diffusivity equation is
discussed and experimental recommendations are made for the
measurement of the compressibilities. An experimental proce-
dure is explained and results obtained within our lab are pre-
sented and discussed. An equation is established to estimate
the Biot’s coefficient b for a carbonate of given porosity.

INTRODUCTION

From the petrophysicist standpoint, lab studies of fluid flow properties
are based on the diffusivity equation:
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Hence the properties to be determined are the porosity, the perme-
ability and the compressibility. Since the rock deformation has to be
taken into account, the compressibility is defined as:

c=cp+ Cpy (2)
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in which ¢, is the matrix compressibility defined in reservoir engi-
neering practice by:
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The lab test is usually performed at constant pore pressure, with a
varying confining pressure. We will show that a variation of the pore
pressure at constant external pressure is not equivalent to a variation
of the external pressure at constant pore pressure.

BIOT’S THEORY FOR ELASTIC MEDIA

For a detailed description of Biot’s theory, one should consult the
article by Laurent and Quettier (1989) and refer to the articles by
Biot (1941,1962) and Coussy (1989)

Let us assume a homogeneous isotropic medium subjected to
a stress system o;; to infinity. The resulting displacement field is
called u;. Let us assume a fluid circulating in the porous medium.
The displacement vector of the fluid is called U;. For a given volume
element, the relative displacement w; of the fluid in relation to the
solid is given by:

w; = @(U, - ui) (4)

The equations of equilibrium are (Biot, 1962):
Veos;=0 (5)
—Vew=( (6)

in which ¢ is the variation in the fluid content. The behavior laws are
written:

G = 2#6;]' + (/\d + b2M)t7'(6;j)6,'j - bMC(S,J (7)
Prore = bMé — M¢ (8)

.k
w = ;vam (9)

the third behavior law being Darcy’s law. The second behavior law,
can also be written in the form:
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%ﬁizbé—{ (10)

Assuming the isotropy of the material and elastic behavior, Biot
worked out the following equations:

p7ui + (1 + M) ve —bMv( =0 (11)
. k.M,
¢ - gt =0 (12)
in which
2p + A
_ 2 - e
Ay = Mg+ UM Mu_2#+/\uM (13)

POROELASTICITY AND FLUID FLOW PROPERTIES

In Equation (12) we recognize a diffusivity equation having a form
that is familiar to hydraulics specialists. However, the variable is not
the pressure but the variation of the fluid content, which includes a
volumetric deformation term for the solid. For a detailed discussion
of the relationship between Equation (12) and the pressure diffusivity
equation familiar to hydraulics specialists one could consult the article
by Boutéca and Sarda (1990). Let us study the diffusivity equation
for two cases: a) constant isotropic stress tensor and b) constant
volumetric deformation.
From Equations (6), (9) and (8) we obtain:

P ore . k
—%J— —~ bé = ;v2ppm (14)

Let us first consider that the isotropic part of the stress tensor
is constant (ojx = 0). Taking Equation (7) into account, we obtain:

0=%““= [§y+,\d+b2M]é—bM<’=Kué—bM¢ (15)

Introducing into (14) and taking Equation (8) into account, we
obtain:

S N N
vaor —k[M'*'I{d} Ppo’re (16)
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Hence, under constant isotropic stress conditions, the pressure diffu-
sivity equation leads to a diffusivity coefficient defined by:

1 nf1 b?
g B N T 17
K~ % [M %, (17)
Let us consider now that the volumetric deformation is con-
stant (é = 0). Introducing into Equation (14), we obtain:

2] B (18)

Hence, under constant volumetric deformation conditions, the pres-
sure diffusivity equation leads to a diffusivity coefficient defined by:

1 nfl ]
—=4L|= 1
K k [M (19)
Depending on the local condition (oik = 0 or é = 0) we obtain
two expressions for the diffusivity coefficient:

vapore =

. 1 7n1 b?

7iac =0 %37l 20
. 1 1
¢=0 % =% ) (21)

As shown by Boutéca and Sarda (1989), the Biot’s coefficient M may
be approximated by (M =~ ®cy;). On the other hand, lab results -see
next sections- indicate that for weak rocks, the ratio (6%/K,) may be
of the same order of magnitude as (1/M). Under these circumstances
no approximation can be made as far as the rock deformation is con-
cerned and the diffusivity equation should be solved together with the
rock deformation equations.

Equations (11) and (12) show that one may solve any poro-
elastic problem when four elastic coefficients (4, A or K4,b, M) and
the rock permeability (k) are given. Deviatoric stress condition is
needed to measure y. The remaining poroelastic coefficients and the
permeability may be determined under isotropic conditions.

Note that there is no need of measuring c,,. However let us go
back to this coefficient. Zimmerman et al (1986) defined 4 compress-
ibilities, among which:
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pe V;, 8me Ppore
According to Zimmerman et al. we have:
Cop = Cpe — €4 (24)

in which ¢, is the skelton compressibility. Hence, one should be care-
ful when measuring cp,. This compressibility cannot be determined
with a constant pore pressure condition unless ¢, is known.

EXPERIMENTAL PROCEDURE AND RESULTS

Experimental Procedure

We will focus on the determination of Ky, b and M. Since they may
be determined under isotropic stress condition the experimental set-
up will only need to monitor two pressures: a) the confining pressure
(Peons) and the pore pressure (Ppore). The same experimental proce-
dure is used for all the experiments (Figure 1).

The basic cycle goes as follows: the confining pressure is first
increased while maintaining constant the pore pressure. We then
maintain constant the confining pressure and increase the pore pres-
sure. After several cycles we decrease the pressures using the same
procedure.

The sample is coated with an impermeable material and sat-
urated in the cell. The pore volume communicates with the external
volumetric pump through a microwell.

Volumetric pumps coupled with pressure gauges are used to
control and measure the confining pressure and the bulk volume on
one side, the pore pressure and the pore volume on the other side (see
Figure 2). The experimental set-up has been designed to reduce to a
minimum the errors induced by the compressibility of the system. For

a detailed discussion of the relative errors induced, one should refer
to Laurent et al. (1990).
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Figure 2 : Experimental set-up
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Experimental Determination of the Coeflicients

Since we are operating under isotropic stress conditions the equations
previously obtained may be simplified.

Let us first determine b, using Equation (10). ¢ may be exper-
imentally determined using the relationship (Geerstma, 1957):

v, vy
(=P _ L 25
: ¢ Vs Vs (25)
Under constant pore pressure condition this equation leads to:
o,
=22 26
=2 (26)
and Equation (8) leads to:
be = (27)
in which e is experimentally measured using the relationship:
oV,
=—— 28
e=-7 (28)
Hence b may be determined as:
%
b= ==L 2
|, (29)
pore

Let us now determine K. Equation (7) may be written as:

& . ) .
% = Poons = Kué — bM¢ (30)

taking Equation (10) into account we obtain:

Pepns — bPpore = Kyé (31)

¢ is the volumetric variation and Pe,,; — P, is the effective stress.
Using the relationship (31) one can determine K.
Finally, using Equations (8) and (25), one can determine M.
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Results

Five carbonates have been studied, their description is given in ta-
ble 1. The results for K4, b and M are given on table 2, together with
the approximation M ~ ®c;. In the table, Sdev stands for Stan-
dard Deviation. An example is given for the determination of K on
figure 3.

Table: 1 : Description of the carbonates

Name porosity  density permeability comments
(%) (D)
Larrys 42-44 2.58-2.59 0.1 micrite
pores 20-50 p
Tavel 9.9-10.2 2.41-2.42 0.2 micrite
pores up to 50u
Vilhonneur 13.1-14.8 2.31-2.34 0.4 oolites
Lavoux 23.3-23.9 2.02-2.06 3-5 pellets
Estaillades 28.9 100 bioclasts

From Table 2 one may see that the approximation for M sounds rea-
sonable.

BIOT’S COEFFICIENT b AS A FUNCTION OF THE
CARBONATE POROSITY

Biot’s coefficient b can be computed using the relationship:

—1-=2 2
b % (32)

Theoretical research work in mechanics have been devoted to the de-
termination of upper and lower bounds for the properties of a compos-
ite material from the properties of the basic components. A synthetic
work has been presented by Watt et al. (1976). We have been working
on the basis of Hashin and Shtrikman’s work (1961) and on the basis
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Table 2 : Experimental results
Ky Sdev b Sdev M Sdev @iﬂ
Name (MPa) (MPa) (MPa) (MPa)
Larrys 33850 0.9 034 0.04 41350 2200 46200
Tavel 19 500 0.7 0.63 0.03 19260 1200 23000
Vilhonneur 19800 0.3 0.71 005 13500 580 15200
Lavoux 8 600 04 0.81 0.03 8400 260 9 500
Estaillades 5 400 0.5 0.88 0.02 7200 330 7 800
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Figure 3 : Determination of K,
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of Miller’s work (1968). In our case one of the components is the cal-
cite and the other one is the void. Under such circumstances, in both
theoretical work, the upper limit for b is 1. We will thus study herein
the lower limit. Based on Hashin and Shtrikman’s work Zimmerman

et al. (1986) obtained:

Ky 1
b=1-2=1-(1—-&)—p—— (33)
K, [1 + —(——12(11_“2%)]

Using the same procedure we derived from Miller’s work:

3
b=1-(1-9) [1‘¢+31;_23 [1—%@—3(1—24’)6']} 0

In which G is a geometrical constant varying in the range of 1/9 to
1/3. G = 1/9 corresponds to an average spherical grain geometry and
G = 1/3 to an average plate geometry.

It is of some interest to note that both formulations (33) and (34)
may be expressed as:

A(®)
b=1-(1 Q)[ﬁ¢+A(<I>)] (35)
in which A(®) is a linear function of ®. Both limiting values for b may
be found out of this formulation. When the porosity tends towards
zero b is equal to zero. When the porosity tends towards one b is equal
to one.

In Figure 4 we have plotted our experimental results together
with the theoretical bounds (v, = 0.3). The vertical bars correspond
to the standard deviation. We have plotted Miller’s bound for 3 val-
ues of G. For G = 1/9 Hashin and Shtrikman’s bound and Miller’s
bound are very similar. For G = 1/3 Miller’s bound leads to a straight
line. This curve cannot be accepted since it corresponds to a lower
bound for b while it is strongly greater than the experimental value
for @ = 0.05 . Finally we plotted Miller’s bound for G = 1 /3.206
which fits with the experimental value for ® = 0.05 (Larrys carbon-
ate). The curve underestimates all the other values. It leads to the
best theoretical lower bound for our experiments.
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Figure 4 : Theoretical bounds for b(®)

IFP PHENOMENOLOGICAL MODEL
Let us assume that the rock may be described as an assembly of cubic
i . The space

blocks with Young’s modulus E, and Poisson’s ratio v,
around the blocks constitute the pore volume. We assume that the
, .

cement between the blocks has a Poisson’s ratio equal to 0 and a
Young’s modulus E.. Let us then compute the bulk volume variation

?
-
and the pore volume variation for a given confining pressure variation

8Feons 4 (36)

A% 5Pconf
T = el (121 - @) + 372
AV;, 5Pcanf
—t —
Ve O E (37)

In which V}, is the initial bulk voluine. The b coefficient is then given

(38)

We obtain:

by:
y_ AVp _ 3
AV e+ E(1-2,)(1-9)
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Note that Equation (38) is in agreement with Equation (35), in which:

A=%(1—2Vs) B=1-4 (39)
In order to estimate the ratio £, we used Equation (38) for

Larrys carbonate. The ratio is then 0.19 . We kept this ratio constant
for all the carbonates. The resulting curve is plotted on Figure 5. The
theoretical curve fits reasonably well with the experimental data.
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Figure 5 : IFP model for b(®)
CONCLUSION

Using Biot’s theory of poroelasticity we have shown that, depending
on the mechanical assumption we obtain different expressions for the
diffusivity coeficient of the pressure diffusivity equation as defined in
reservoir engineering:

. 1 g1 b2
Ol =0 _-];[—M+A—,d] (40)
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o 2t

Using the experimental results of Table 2, one may see that the two
coeflicients may differ by a factor of 2 for weak rocks (the Estaillades
carbonate for instance).

The relevant coeflicients have been experimentally determined
and the relationship between Biot’s coefficient b and the carbonate
porosity has been studied. A general relationship has been estab-
lished (35) for the theoretical lower bound based on Hashin and Shtrik-
man’s work and Miller’s work:

A(2) ]
b=1-(1-9) |———"— 42

( ) [ B+ A(®) (42)
We finally derived a phenomenological model which leads to a similar
expression (38) and fits with the experimental results:

E, E.
A=F1-2)  p=1-4 7 =019 (43)

NOMENCLATURE

cs1 compressibility of the fluid (counted positively)

¢pp Matrix compressibility as defined in reservoir engineering practice
¢, compressibility of the skeleton (grains + cement + occluded poros-
ity) (counted positively)

e =V o u = tr(e;;) = volumetric deformation (counted positively for
a compression)

k permeability

K diffusivity

Ki=2u+X

K, incompressibility modulus of the skeleton

K,=K;+v¥M

M poroelastic coefficient

M, undrained poroelastic coefficient

P,,.. pore pressure

P,,,s confining pressure

u displacement of the rock (positive for a compression)

U displacement of the fluid (same sign as u)

V, bulk volume
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0V fluid volume variation due to the fluid compressibility (positive
for expelled fluid)

Vp pore volume

w relative displacement of the fluid in relation to the solid
b Biot’s coefficient

€ij = 3 [uij + ]

Ag Lamé’s coefficient for drained conditions

Ay Lamé’s coefficient for undrained conditions

u shear modulus

v, Poisson’s ratio (drained)

® open (or connected) porosity

oi; stress (positive for a compression)

¢ variation of fluid content (positive for expelled fluid)

7 fluid viscosity
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