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ABSTRACT 1991 SCA Conference Paper Number 9123

This work is part of on-going research aimed at correlating rock skeletal properties to oil recovery
from sandstone, limestone and dolomite cores and incorporating these properties into a stochastic
model for predicting oil recovery. As such, this report is divided into the analyses and interpretation
of experimental data collected from core floods and correlated against measurements of wettability,
tortuosity, pore entry diameter, surface area and pore length and the presentation of a stochastic model
based on data obtained from these laboratory experiments which relates rock skeletal properties to oil
recovery.

Analyses suggest that capillary pressure curve shapes and mercury incremental intrusion volume
plots are useful in describing pore-size distribution in porous media. Further analysis shows that
snap-off and bypassing mechanisms are related to the pore aspect ratio(ratio of pore-body to pore-
throat) and to pore connectivity. Mercury trapping is pronounced in Berea cores where cul-de-sac
configurations are abundant. Cul-de-sacs with significant pore aspect ratios are characterized by a high
degree of trapping. Moreover, limited pore connectivity enhances trapping and mercury isolation as
discontinuous blobs of mercury are difficult to recover following the intrusion-extrusion cycle.

In a Berea core, a strongly water-wet rock, the mercury-air system is best suited to represent an
oil-brine system. Extensive experiments using 524 core plugs revealed that mercury recovery
efficiency is related to rock porosity, pore hydraulic diameter and surface area available to the non-
wetting phase. Analyses show that under capillary force dominance, mercury recovery efficiency is
high for the tighter cores which have a small pore-entry diameter and a large rock surface area.

The results of the core analyses have been incorporated into a stochastic model. This model,
based on reservoir architecture, can be used to predict reservoir performance and consequently oil
recovery. The skeletal properties contained in the model will include: hydraulic diameter, rock surface
area, pore-size distribution, wettability, tortuosity and porosity.

INTRODUCTION

The mechanisms of oil dispacement by waterflooding were investigated using radial Berea sandstone
cores. Furthermore, a frontal advance rate of one foot/day was selected to simulate fluid flow
mechanisms in strongly water-wet systems where capillary forces are the predominant driving
mechanisms. The ratio of viscous to capillary to forces for this system was calculated to be 1.344x107".
The oil produced was shown to be dependent to a large extent on the size, shape, arrangement and
distribution of pores, rock porosity, surface area, wettability and tortuosity of the connecting throat
passages.

Pore-size distribution, pore-entry diameter and rock surface area were determined using mercury
porosimetry analysis. Mercury porosimetry analysis is used to investigate the mechanisms of non-
wetting phase trapping and the influence of rock microscopic skeletal properties on oil recovery.
Pickell, Swanson and Hickman (1) found that air-mercury capillary pressure data adequately describe
the distribution of fluids in a water-oil system when strong wetting conditions prevail. They also
indicated that such data is extremely useful in the study of pore structure and the degree of fluid
interconnection at various saturations. Furthermore, Purcell (2) used air-mercury capillary injection
curves to characterize the drainage curve and the rock pore structure.

Wettability indices were determined using the Amott-Harvey method. Chatzis et al. (3) indicated
that under water-wet conditions, residual oil saturation is affected by particle size, particle size-
distribution, macroscopic and microscopic heterogeneities, microscopic dimensions such as the ratio of
pore-body to pore-throat size, and the pore-to-pore coordination number.

Pickell, Swanson and Hickman (1) suggested that the degree of wettability of a reservoir rock is
an important factor in waterflood or imbibition experiments. Additionally, they indicated that in the
case of water-wet rock and reasonably low oil/water viscosity ratio, capillary forces affect the
displacement of oil by brine in two ways. On the microscopic scale, capillary forces control the
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distribution of fluids in the pore spaces at all saturations. On the macroscopic scale, differences in
capillary forces at the flooding front result in the brine flowing into regions of high oil saturation.
Therefore, capillary forces tend to erode fingering and bypassed oil patches and bring about a diffuse
saturation gradient at the front. The slope of the front with respect to the horizontal will depend upon
the rate of the frontal advance and the mobility characteristics. Furthermore, Kimbler and Caudle (4)
indicated that for water-wet rocks, capillary forces control the distribution of fluids and viscous forces
by contrast have a minimal influence on residual oil saturation and on oil recovery by waterflooding. It
should follow therefore that if the ultimate oil recovery is controlled by pore geometry, a unique
residual non-wetting phase saturation should exist for a given initial non-wetting phase saturation.

Engelberts and Perkins (5) and Craig (6) have reported that ultimate oil recovery realized in
laboratory water-drive experiments conducted in water-wet rocks differ from that realized in reservoirs
at field rates. Furthermore, evidence was provided to show that fluid distribution in a porous medium
is a function of pore-size distribution, pore configurations, interfacial properties and previous saturation
history. Laboratory measurements of air-mercury capillary pressure hysteresis was proposed as a
useful technique for predicting fluid distribution for water-wet conditions. Residual non-wetting phase
saturations were shown to be a function of pore geometry and initial saturation.

RESULTS AND DISCUSSION

‘Waterflood Results

As previously noted by Watson and Boukadi (7), there was a tendency for residual oil to increase as
the initial oil saturation increased in the waterflooded Berea sandstone rocks. Our findings are in
agreement with Pickell et al. (1), Wardlaw et al. (8), Chatzis and Dullien (9), and Wyman (10).
Willhite (11) stated that for waterflooding experiments conducted in strongly water-wet rocks (such as
Berea sandstone at a Darcy flow rate of 1 foot/day), capillary forces strongly affected the distribution
of fluids. The viscous forces, however, had only a minimal influence on residual oil saturation. In this
study, the ratio of viscous to capillary forces was calculated to be 1.344x10”7. Therefore the residual
oil saturation resulting from waterflooding was influenced by capillary forces only. The effect of the
initial and residual oil saturations on oil recovery by waterflooding was taken into account by including
these variables in the stochastic model.

Moreover, in the case of a reservoir acting under capillary pressure dominance, tortuosity, 1, of
the connecting throat passages was shown by Watson and Boukadi (7) to affect the outcome of oil
recovery by waterflooding. To reduce the margin of error and improve the model prediction
capabilities, tortuosity, a reservoir architecture component, was incorporated into the stochastic model.

Wettability Results

Relative wettability was determined using the Amott-Harvey method. As described in ihe previous
work by Watson and Boukadi (7), wettability indices varied from a minimum value of +0.45 to a
maximum value of +1.00 or absolute water wettability. It was concluded that Berea sandstone
wettability was described as "dalmatian” with some parts of the rock being water-wet and others being
oil-wet. Furthermore, wettability is "dalmatian" mainly because of the occurence of shaley streaks in
the Berea sandstone cores tested. The mean wettability was found to be functionally related to the
amount of hydrophobic or hydrophilic surface area present in each core sample.

The behavior of capillary pressure is critical in secondary recovery processes where the average
displacement frontal advance rate is low. Capillary pressure is a function of the contact angle, which
in tumn, is a function of the wetting properties of the fluids and rock surfaces. In designing the
stochastic model, one of the independent variables incorporated into the modei to account for capillary
pressure was the relative wettability. Our analysis indicated that oil recovery by waterflooding is

-
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related to the degree of water-wetness. Waterflood experiments conducted in strongly water-wet Berea
core resulted in a higher oil recovery as compared to a less water-wet medium.

Mercury Porosimetry Results

Pore-entry diameter and rock surface area are two major indicators of the rock pore-size distribution.
These factors were determined using Mercury porosimetry measurements. Several authors indicated
that pore-size distribution has a major role in determining the outcome of a waterflood in a reservoir
under capillary pressure dominance. To simulate such fluid flow mechanisms, pore-entry diameter and
rock surface area were incorporated in the statistical model.

MODEL-BUILDING PROCESS

Data Collection and Preparation

The types of data considered are divided into two groups: (a) a series of n observations representing
single measurements of the same quality characteristic of n similar things, and (b) a series of n
observations representing n measurements of the same quality characteristic of one thing.

_ An example of data of the first type would be 20 observations of residual water saturation from
20 different cores where a description of the data is obtained. The description involves the
determination of the mean, median, standard deviation and possible outliers from the data.

The measurement of the thickness of a test core would be an example of the second type of data.
If the distribution of the data set (the repeated measurements of the core thickness) is normal, an
average of the data set can be generally obtained and is meaningful. If however, the data set contains
outliers and is represented by a skewed distribution, a median rather than a mean is more
representative of the data set.

In waterflooding and porosimetry measurements, data are classified as data of the first type.
However, data obtained from wettability and Klinkenberg air porosity and air permeability
measurements are classified as data of the second type.

Reduction of Number of Independent Variables

Once the data has been collected and prepared, the method of upper and lower quartiles, which is
comparable to stem-and-leaf plots, was used to identify mild and extreme outliers for each of the
independent variables. Additionally, relationships and interaction effects were explored using the
independent variables considered in the model.

A first-order regression model relating the ultimate oil recovery (UOR) to all independent
variables was fitted. It is presented in the following form:

UOR = 0.362 + 0.005 SA ~ 0.0263 d — 0.000064 T —0.923 ¢ +0.000027 k
~0.0183 L + 0.375 WI -130 S,, + 0.632 S,

R?=94.4%
s = 0.00961
F = 18.65
R?, = 98.3%
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The normal probability plot of the residuals for the full model is presented in Figure 1. Normal
probability plots are used to test the residuals normality or departure from normality, identify outliers
and test the model’s linearity. In addition to the normal probability plot, the residual plot for this
particular model is presented in Figure 2. Residual plots test the possibility of error terms correlation
and regression function lincarity. They are also used to validate the regression model’s assumption
that the error terms variability is constant. The different coefficient of correlations, R%,, for the
different tested models between the ordered residuals and their respective values under normality are
presented in Table 1; reference to Table 2 supports the conclusion of the error terms being normally
distributed.

As shown in Table 3, the correlation matrix with the dependent variable, ultimate oil recovery,
was obtained. Tables 1 and 2 and the various residual and normal residual plots all indicate that each
of the independent variables is linearly associated with the dependent variable, S, (residual oil
saturation) showing the highest degree of association and t (tortuosity) the lowest. The correlation
matrix further shows intercorrelations among the potential independent variables. In particular, SA
(surface area) has a high pairwise correlation with L (pore length) and ¢ (porosity) and moderately
high pairwise correlation with d (pore-entry diameter) and WI (wettability index). On the basis of
these analyses, the dependent variable, ultimate oil recovery, would be represented as a function of the
independent variables in linear terms, and not to include any interaction terms. Table 4 shows the
pairwise comparison of the different independent variables used in the full-model.

The all-possible-regressions selection procedure calls for a consideration of all possible regression
models involving the potential x variables and identifying a few "good" subsets according to some
criterion. In most circumstances, it would be impossible to make a detailed examination of all possible
regression models. For instance, when there are 8 independent variables in the pool of variables as in
the case of this study, there would be 2® = 256 possible regression models. Since the pool of potential
X variables is high, this study will concentrate on a few of the possible regression models. According
to a different set criteria, this number consists of 40 subsets. These critcria are : Rzp, MSE, and C,.

R%, Criterion:

Before examining the different criteria, a notation needs to be developed in which the number of
potential x variables in the pool would be denoted by p-1. Additionally, all regression models are
assumed to contain an intercept B,. Hence, the regression function containing all potential x variables
contains P parameters, and the function with no x variables contains one parameter (8,). The number
of x variables in a subset will be denoted by p-1, as always, so that there are p parameters in the
regression function for this subset of x variables. Therefore, it follows that:

1<p<P

The all-possible-regressions approach assumes that the number of observations exceeds the maximum
number of potential parameters: n > P. The R?, criterion calls for an examination of the coefficient of
multiple determination, R%. The number of parameters in the regression model is shown as a subscript
of R%, Therefore, R?, indicates that there are p parameters, or p-1 predictor variables in the regression
function on which RZ:, is based.

Since:

R? = SSR, o1 SSE,
P~ SSTO SSTO
and the denominator is constant for all possible regressions, R2p varies inversely with the error sums of
squares SSE,. But we know that SSE, can never increase as additional x variables are included in the
model. Therefore, R%, will be a maximum when all p-1 potential x variables are included in the

regression model. The reason for using the R"’P criterion with the all-possible-regressions approach,
therefore cannot be to maximize R?%,. Rather, the intent is to find the point where adding more x

4-
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variables is not worthwhile because it leads to a very small increase in R?,. The R%, values as a
function of P, the number of parameters, are plotted in Figure 3. The maximum Rzp value for the
possible subsets of p-1 predictor variables, denoted by max (Rzp), appears at the top of the graph for
each p. These points are connected by dashed lines to show the impact of adding additional x
variables. Figure 3 makes it clear that little increase in max (Rzp) takes place after 6 variables are
included in the model. Hence, the use of subset (SA, d, 1, WI, S, S,) in the regression model
appears to be reasonable according to the R2p criterion. Note that variables ¢, porosity, and k,
permeability, which correlates most highly with the independent variables, are not in the model of
P =7, indicating that SA, d, T, WI, S, S, contained much of the information presented by ¢, porosity,
and k, permeability.

C, criterion:

This subset is concemed with the total mean squared error of the n fitted values for each subset
regression model. The mean squared error concept involves a bias component and a random error
component. The mean squared error pertains to the fitted values Y; for the regression model employed.
The bias component for the ith fitted value is:

E(Y) -
where E(Y) is the expectation of the ith fitted value for the given regression model and p; is the true
mean response. The random error component for Y; is simply oY), its variance. The model which

includes all p-1 potential x variables is assumed to have been carefully chosen so that MSE(X;,....X,-1)
is an unbiased estimator of 62 It can be shown that
SSE

= P — (n—
= MSEK;,. X,y P

where SSE, is the error sum of squares for the fitted subset regression model with p parameters. When

Cp

there is no bias in the regression model with p-1 predictor variables so that E{¥;¢ = w;, the expected

dord)

Therefore, when the C, values for all possible regression models are plotted against, those models
with little bias will tend to fall ncar the line C, = p. Models with substantial bias will tend to fall
considerably above this line. C, values below the line C, = p are interpreted as showing no bias; that
is, they are below the line due to sampling error. In using the C, criterion, one seeks to identify
subsets of X variables for which (1) the C, value is small and (2) the C, value is near p. Sets of x
variables with small C, values have a small total mean squared crror, and when the C, value is also
near p, the bias of the regression model is small. The C, values for the selected models are plotted as
a function of P, the number of parameters, in Figure 4. As shown in Figure 5, plotting C, values
against R2p values suggested that subsct (SA, d, T, WI, S, S.;) is a better choice than the full model.

value of C, is approximately p:

Model Refinement and Selection

After successfully reducing the number of independent variables, variables such as SA, d, 1, WI, Sor
and S;; are known to be essential. The nonstandardized multiple regression model presented the
difficulty that the ordinarily regression coefficients can not be compared because of differences in units
involved. To eliminatc the problem of lack of comparability in regression coefficients a correlation
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transformation was used. The use of correlation transformation helps with controlling roundoff errors
and makes the units in the regression coefficients comparable.

The correlation transformation is a simple modification of the usual standardization of a variable.
Standardizing a variable involves taking the difference between each observation and the mean of all
observations and then expressing the differences in units of the standard deviation of the observations.
Therefore, the usual standardizations of the dependent variable Y and the independent variables
Xj,...Xp1 are as follows:

X — Xi

k=1,..p-1
Sk

Where Y and X, are the respective means of Y and X,, and sy and s, are the respective standard
deviations defined as follows:

_ \/ o (i - V)
Y=N& @1

2 (X — Xi)” 3
\/ o= el

The correlation transformation uscs the following function of the standardized variables in:

Standardized Regression Model

The regression model with the transformed variables Y’ and X', as defined by the correlation
transformation is called a standardized regression model and is as follows:

4
Yi=Bf1Xu+ - +PBpaXip1 + €}

The reason why there is no intercept parameter in the standardized regression model is that the least

squares calculations always would lead to an estimated intercept term of zero if an intercept parameter
were present in the model.
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It is easy to show that the new parameters B'y,..., B’,-y and the original parameters B,, Bi...., Bp-; in
the ordinary multiple regression model are related as follows:

By = (Z_Y)B'k (k=1,...,.p~-1)
‘ "

Bo=?-[31?1— _Bp—lip—l

Therefore, the new regression coefficients B’ and the original regression coefficients B, (k=1,...,p-1),
are related by simple scaling factors involving ratios of the standard deviations.

At this stage, the model relating the dependent variable ultimate oil recovery (UOR) to the
previously mentioned independent variables is presented as follows:

UOR = 0.0052 + 0.252 SA -0.167 d — 0454 T + 0.464 WI -1.74 S_, +1.08 S,

R?=928%
s = 0.0754
F=27.92
R = 98.4%

The residual and normal residual plots for this particular model are presented in Figures 6 and 7,
respectively. Reference to Figures 3, 4 and 5 and to Table 1 lead to the conclusion that this model is
the preferred model. This model is preferred over other models since it uses essential variables, has a
high coefficient of multiple determination (R? = 92.8%), uses fewer variables (6), has a low standard
deviation (s=0.0754), and its first-order classification stands since the error terms are strongly normal
(R?>y = 98.4%). Reducing the selected model resulted in higher values of C, which lead to the
conclusion that the bias in these models is large as shown in Table 1. Among the reduced models, we
selected the following:

UOR = 0.0034 + 0.451 SA - 0.166 d — 0.412 t +0.631 WI — 0.636 S,,

R2 = 83.0%
s=0.1116
F=13.70
R%y = 96.7%

The residual and normal residual plots for this particular model are presented in Figures 8 and 9,
respectively. Reduction of the chosen model resulted in higher standard error (s =0.1116), lower
coefficient of multiple determination (R? = 83.0%), and a larger (C, = 22.183) indicating a higher bias in
the model. The residuals were less normal (R% = 96.7%) leading to the conclusion that the first-order
model classification is less powerful.

Model Validation

Two models out of the literature are selected to test and validate the model selected. One of these
models was presented by Donaldson, Thomas and Lorenz (19). The statistical model related oil
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recovery to wettability, permeability, porosity, oil viscosity and initial oil saturation.

UOR = -0.007 -1.12 ¢ + 0.470 k + 0.410 WI -0.369 S,;

R?=72.8%
s =0.1380

F = 8.04

R%\ = 94.3%

The other tested model developed by Armold and Crawford (20) is an empirical equation relating
oil and rock properties to waterflooding recoveries. The empirical equation correlates oil recovery to
porosity, permeability and initial oil saturation. The model was used to test and validate our data.

UOR = -8.52 +0.00224 k — 12.1 S,; +4.7 x107" k% + 1.24 S;2
+63.0 ¢ S

R?=1771%
s = 00177
F=5.76
R% =972%

The additional variables incorporated in our model, surface area, pore-entry diameter, and
tortuosity, which best describe rock skeletal properties, were used to simulate fluid flow mechanisms in
a porous medium where capillary forces are dominant. Their addition improved drastically the
summation of squares for regression and the model prediction capabilities by lowering the margin of
bias and random errors.

CONCLUSIONS

The experimental work on which the correlations presented here is based, dealt with water-wet media
under laboratory conditions. It was shown that oil recovery by waterflooding, in a porous medium
under capillary forces dominance, can be better estimated if microscopic rock skeletal properties such
as surface area, pore-entry diameter and tortuosity can be incorporated into an empirical equation.

e  The standardized regression model selected, although in a reduced form, predicted oil recovery by
. waterflooding with an a standard deviation of 7 per cent. The fact that in this model C, is
slightly lower than P is the result of random variation in the C, estimate. In addition, the reduced
model was standardized due to the lack of comparability in regression coefficients. The full
model (not in a standardized form) which involves 10 parameters predicted oil recovery with a
standard deviation of 1 per cent.

e  Thinty nine other equations were developed. Some of these models are associated with high
standard deviations, low coefficients of multiple determinations or substantial bias. Very few
models are associated with C, values tending to fall below the line C,=p. These models are
interpreted to show no bias; that is, they are below the line due to sampling error.
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Table 1: Rl?, MSE,, C, and RZ Values for the Investigated Regression Models

Variables p df SSE, R?, MSE, C, R3
Sui 2 18 0.0112241 316 0.0006236 105.604 0.983
See 2 18 0.0067652 58.8 0.0003758 57.296 0.973
wI 2 18 0.0150823 8.1 0.0008379 147.405 0.978
L 2 18 0.0152882 6.9 0.0008493 149.636 0.924
K 2 18 0.0142500 132 0.0007917 138388 0.930
o 2 18 0.0130872 203 0.0007271 125.790 0.941
T 2 18 0.0157821 39 0.0008768 154.987 0.957
D 2 18 0.0141766 13.7 0.0007876 137.593 0.927
SA 2 18 0.0132774 19.1 0.0007376 127.850 0.941
Sees Sui 3 17 0.0035314 78.5 0.0002077 24.260 0.783
T, Sex 3 17 0.0067608 58.8 0.0003977 59.248 0.973
T, S 3 17 0.0109953 33.0 0.0006468 105.126 0.984
T, S S 4 16 0.0029848 81.8 0.0001865 20.338 0.783
1, WL, S, 4 16 0.0064027 61.0 0.0004002 57.368 0.987
T, WI, Sy 4 16 0.0010540 358 0.0006588 102.198 0.990
WI, S, Soi 4 16 0.0035299 78.5 0.0002206 26.244 0.783
1, WL Sq, Sai 5 15 0.0026293 84.0 0.0001753 18.486 0.876
SA, d, T, WL, S, 6 14 0.0027859 83.0 0.0001990 22.183 0.967
SA, d, T, W, S 6 14 0.0047629 71.0 0.0003402 43.602 0.981
SA, d, T, Sa. Sa; 6 14 0.0020582 87.5 0.0001470 14.299 0.957
SA, d, WL S,, Sq; 6 14 0.0020506 84.7 0.0001790 19.148 0.943
SA, T, WL, S, S 6 14 0.0014184 914 0.0001013 7.367 0.988
d, T, WL, S,. S 6 14 0.0014756 91.0 0.0001054 7.987 0.987
SA, d, 1, WL S, Sq 7 13 0.0011822 92.8 0.0000909 6.808 0.984
SA, d, T, L, WL S, 7 13 0.0019949 87.9 0.0001535 15.613 0.978
SA.d, 1, L, WL S, 7 13 0.0035260 78.8 0.0002712 32.201 0.983
SA,d, T, L, Sa, Sai 7 13 0.0018647 88.6 0.0001434 14.203 0.961
SA, d, L, WL, S, Sq; 7 13 0.001924 88.4 0.0001471 14.719 0971
SA, 1, L, WL, S,, S 7 13 0.0014135 91.4 0.0001087 9.314 0.975
d 1.L, WL S, Sy 7 13 0.0014753 91.0 0.0001135 9.984 0.987
SA,d, 1, L, WL, S, Sg 8 12 0.0010678 93.5 0.0000890 7.569 0.993
SA.d, 7.0, K, L, WL, S, 9 1 0.0014350 913 0.0001305 13.547 0.985
SA,d, 1, 0, K, L, WL S, 9 1 0.0028059 829 0.0002551 28.400 0.970
SA, d, 7, , K, L, Sq S 9 1 0.0012183 92.6 0.0001108 11.199 0.965
SA, d, T, 6, K, WL, S, S, 9 1 0.0010853 93.4 0.0000987 9.758 0.995
SA, d, 1, ¢, L, WL, S,, Sq; 9 1t 0.0009537 94.2 0.0000867 8.333 0.992
SA.d, ¢,K, L, WL S, S, 9 11 0.0013351 919 0.0001214 12.465 0.984
SA, T, 6, K, L, WL S, S, 9 1 0.0013160 92.0 0.0001196 12.258 0.983
d T ¢, K L, WL, S,, S 9 1 0.0009233 94.4 0.0000839 8.000 0.983
SA, d, 1, 0, K, L, WL S, S 10 10 0.0009231 94.4 0.0000923 10.00 0.983

Table 2: Table of Alpha Critical Values

a o

.10 .05 01 N .10 .05 .01
8951 8734 8318 30 9707 9639 .9490
9033 8804 8320 40 9767 9715 9597
9347 9180 8804 S0 9807 9764 9664
9506 9383 9110 60 9835 9799 9710
20 9600 9503 9290 75 9865 9835 9757
25 9662 9582 9408

Ao wmaZ
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UOR

SA
-0.609
-0.027
-0.688
-0.628

0.753
-0.418
-0.222

0.108

0.437

Table 3: Correlation Matrix for the Full-Model

d

-0.052
0.361
0.517

-0.771
0.081
0.009
0.093

-0.370

-0.192
0.075
0.151
0.705

-0.277
0.143
0.197

) k
0.138
-0.518 -0.476
0.054 0350
0.808 -0.456
-0.658  0.634
-0.806 -0.011

L

-0.196
-0.146
0.103
0.262

wI Ser
-0.250
0.153  -0.937
0285 -0.767

0.513

Table 4: Pairwise Comparison of the Different Independent Variables Used in the Model

Variables
SA, d
1, SA
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df
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18

SSE,
0.0108006

375949

375192
0.0043970
0.0029460
0.0005090

671145

495325

116155
1.5626
1.4719
3.0259
1.2544
1.3386
0.01115
0.025288
0.025366
0.025067
0.025584
0.025542
0.025315
0.024986
0.003146
0.021791
0.020115
0.021352
0.021517
0.021328
0.020717
0.020430
0.00905665
0.0115206
0.0058348
0.0105598
0.0102121
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R%,
37.1
0.1
03
0.0
33.0
88.4
03
26.4
82.7
495
525
23
59.5
56.8
39
12
09
20
0.0
02
11
23
87.7
0.0
17
20
13
2.1
49
6.3
17.5
0.7
49.4
89
119

MSE,
0.006000

20886

20844
0.002443
0.0001630
0.0000283

37286

27518

6453

0.0868
0.0818
0.1681
0.0897
0.0744
0.0006194
0.501405
0.001409
0.001393
0.001421
0.001419
0.001406
0.001388
0.000125
0.001211
0.001117
0.001186
0.001195
0.001185
0.001151 -
0.001135
0.0005315
0.0006400
0.0003242
0.0005867
0.0005673

G

101.016

104.802
257.976
258.821
255.582
261.183
260.728
258.269
254.704

18.084
220.089
201.931
215.333
217.120
215.072
208.453
205.343

87.646
108.817

41.216

98.407

94.640
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Fig. 1: Normal Probability Plot (Full-Model)
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Fig. 3: Rg vs Number of Parameters Plot
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Fig. 2: Residual Plot vs Expected Values (Full-Model)
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Fig. 4: Cp vs Number of Parameters Plot
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Fig. 5: C, vs sz Plot Fig. 6: Residual Plot vs Expected Values (Reduced-Model)
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Fig. 7: Normal Probability Plot (Reduced-Model) Fig. 8: Residual Plot vs Expected Values (Further Reduced-Model)
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Fig. 9: Normal Probability Plot (Further Reduced-Model)
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