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Abstract

Centrifuge data from short core samples can be interpreted by a direct, non-iterative
method. For larger samples, the increase in centrifugal force along the core leads to
a Volterra integral equation. Direct numerical solution methods are scarce, unless
the data are forced into an assumed functional form of the capillary pressure curve.

This paper presents a method for solving the Volterra equation directly by a
modified midpoint procedure, without iterations, numerical differentiation, curve
fitting, or any assumed functional form. The method has been verified by com-
parison with other procedures, interpretation of artificially generated data, and
by measuring the capillary pressure curves of the same nine cores with the three
standard procedures.

The method is demonstrated on data from forced imbibition experiments. It
is not overly sensitive to the number of datapoints, but a lower limit of 5-6 is
suggested.

Introduction

Hassler and Brunner [1] formulated the problem of deriving the capillary pressure
curve from centrifuge data. They presented a method for interpretation of mea-
sured data from short cores and suggested an iteration procedure for long cores.
Their method has been widely used, but is not quite satisfactory. For short cores,
the differentiation of experimental data may lead to errors and for long cores, the
iteration procedure entails numerical integration and differentiation for each step.

Many authors have suggested improvements and tried to formulate a more direct
solution of the centrifuge equation, Ayappa et al. [2], Glotin et al. [3], and references
therein.

Hermansen [4] recognized the problem as a Volterra integral equation of the first
kind and examined published solution procedures to solve the centrifuge equation.
Several sets of experimental data were interpreted to investigate the practicality of
the methods. The main results of his work are included in the present paper.

Several authors have questioned the validity of centrifuge equation itself, for
example the boundary condition of zero capillary pressure at the outlet end. We do
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Figure 1: Centrifuge schematic

not address these problems and limit our scope to solve the classic Hassler-Brunner
centrifuge equation for long cores.

Theory

Centrifuge Equation

Referring to Fig. 1, the capillary pressure at a radius r: r; < r < ro, is given by [2]

) Pec = %Ap“’z("% - 7'2)’ (1)
and the capillary pressure at the inlet end at r; is
pa = 38p°%(r§ - 1) (2)

The average saturation is defined by

5= 1 /r" S(r)dr. ®3)

o —7T

Substituting p. from Eq. 1 and simplifying gives the centrifuge equation that has
to be inverted based on measured data:

Stpay = LHL [ __SCe) i
¢ 2pc1 Jo \/1_;';&;(1—f2)’

where f = r1/r2, per = pe(r1), and pe2 = 0.

Eq. 4 is a Volterra integral equation of the first kind. It is well known as an ill-
posed problem, causing numerical instabilities, and higher order numerical methods
will diverge, Linz [5]. The equation may be reformulated into a more stable Volterra
equation of the second kind. This procedure is not recommended, however, since
the measured data then have to be differentiated, with the possibility of introducing
large errors.

The centrifuge is used to measure negative capillary pressure during forced im-
bibition, as in the USBM-method [6] for wettability determination. A waterwet,
oil saturated core, after water has spontaneously imbibed, is placed in an inverted
bucket, and more water is forced into the core by centrifugation. It is easily shown
that the form of Eq. 4 is still the same, provided the following substitutions are
made: f — ry/ry, and p,; — pep. Oil is produced at r; where pe; = 0, and the
capillary pressure p.; is now a negative number.

(4)
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Modified Hassler and Brunner Procedure

In this paper is given a direct numerical method for solving the Volterra equation,
Eq. 4. Several authors have tried to modify the equation, as discussed by Ayappa
et al. [2]. We have modified the Hassler and Brunner [1] procedure, in order to have
alternate ways of interpreting the data and to validate the direct Volterra method.

Eq. 4 may be reformulated as an iteration procedure, following Hassler and
Brunner[1],

S

S14+ 82+ S+ -+ Si+Sip1 4+, (5a)

S1 (pcl) % [pcl : g(pcl)] ) (5b)

Silpar) = - /0"“ l1—2 1+f }si(pc)dpc, (5¢)

e ~E (1o
P JI-E0-7)

Differentiation of the integral in Eq. 5c¢, gives

_ 1+f

fori=1,2---.

Siv1(pear) = (11— —=7)- Si(pa1)
+(1+f)(1—f2) Per pcS;(pc)dpc
3/2°
- 22(1-f7)]

This version requires differentiation only during the first iteration, while in the
standard Hassler and Brunner procedure, integration and differentiation have to be
performed during each iteration. Since numerical differentiation is a well known
source of error, the modified procedure is presumably. more stable.

We have tested the modified procedure extensively on the datasets reported in
this work. It is almost as accurate as the Volterra procedure, but slightly more
sensitive to the number of datapoints.

(5d)

Direct Numerical Solution

Eq. 4 may be solved directly by the modified midpoint method, as suggested by
Anderssen and White [7]. Let n: 1 < n < N enumerate the centrifuge frequencies
in a measurement series of N points. Also, let i: 0 < i < n denote an interval
counter, for a given n. The integral in Eq. 4 may now be represented by a sum of
integrals over the measured intervals,

! 2Pc1,n i=1YPari-1 \/1 - ch N (1 - fZ)
1+ f /”“ ' dpe
~ S c 1—— T
2pcl,n Z (p b ) ( )

=t Jl_chn(l—f2)

where pe1 p, is the capillary pressure at the inlet end for the n’th centrifuge frequency;
S(pcl,‘_%) is the saturation at -;—(pcl,;_l + Pe1,i); and peio = 0.
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The integral in Eq. 7 is now evaluated. Introducing the notation S(Pei,k) = Sk
and

Uni =, [1— Beli(q _ g2), (8a)

cl,n

Egs. 6 and 7 give

n—-1
Sn-(1-71)— ZS.’_% (Un,ic1 — Uny)
Sﬂ 1 = ..=1

-2

(8b)

Un,n-1— Unn

The solution given by Eq. 8b often exhibits oscillations, as observed from numeri-
cal experimentation. The amplitude of the oscillations tends to increase with the
stepsize and the level of experimental errors. This seems to be a common trait of
direct numerical schemes for solving Volterra integral equations of the first kind.
Small steps in centrifuge frequency and a smooth experimental curve, S versus p.y,
inhibit oscillations.

Jones [8] suggested a smoothing scheme for oscillating solutions obtained by the
trapezoidal method, and Linz [5] rigorously justified the procedure.

We have experimented with both the modified midpoint and the trapezoidal
methods, Anderssen and White [7]. Both methods give (small) oscillations. Apply-
ing the smoothing scheme of Jones [8], the oscillations from the modified midpoint
method usually disappear. From the first set of solutions [S},S3,---, S}, --,S%],
Eq. 8b, the smoothed saturation at datapoint k, Sy, is formed by

Sk = 5(Sk_1 + 2S¢ + S 41)- 9)

No oscillations are observed, and smoothing is superfluous, if the data are artificially
generated from Eq. 4, with high precision numbers.

Validation
Artificial Data

Bentsen and Anli’s [9] expression
(20 = S + (1 = Suexp [ 2222 (10)

was used to generate artificial centrifuge data from Eq. 4. In Fig. 2 is a plot of the
interpreted results by the direct Volterra method, together with input curve given
by Eq. 10 with the following parameters: S;,, = 0.1, ¢ = 0.6 bar, pg = 0.05 bar.
The match is excellent, as also experienced with other sets of parameters.

Ayappa et al. [2] have used a different capillary pressure curve given by

S =1, 0<p. <2, (11a)
S = %+o.25, pe>2, (11b)
c

and have demonstrated the applicability of the different interpretation methods for
several ratios of radii. In Fig. 2 is a plot of the interpreted results, together with
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Figure 2: Interpretation of synthetic data from Bentsen and Anli [9], [B&A], and
Ayappa et al. [2]

the input curve, for r1/r, = 0.2. The same pressure intervals have been used as in
Ref. [2]. The match is excellent.

From these examples, where no smoothing has been performed, it is concluded
that the direct Volterra method accurately reproduces the given input curve.

The practical usefulness of the method, however, can only be determined by
interpretation of real data. Since the problem is ill-conditioned, even a high exper-
imental accuracy may cause instability problems.

Experiments

Drainage

The data are displayed in Appendix A, Tables A-1, A-2, A-3, and A-4. Drainage
experiments were performed on six Berea cores and three from a North Sea reservoir,
with properties displayed in Table A-1. The same cores, or subsamples thereof, were
subjected to centrifuge expulsion, porous diaphragm displacement, and mercury
injection.

‘The nine samples cover a wide range of permeabilities and two groups of ry /ro-
ratios. Two porosities are given, one for the core and one for the subsample, both
measured by helium injection to give grain volume and mercury displacement to give
bulk volume. They are in good agreement except for Core 10. From comparison
with the other two methods, it is obvious that the correct porosity of Core 10
should be 16.5 %. It is possible that the core and the subsample are different in this
case. To be consistent, the core porosities have been used in the analysis, and the
mercury injection saturations in Table A-3 have been adjusted accordingly, prior to
comparison with the porous diaphragm and centrifuge methods.
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Capillary pressure for the nine cores were determined by the porous diaphragm
method, and the results are shown in Table A-2. The capillary pressure was actually
increased to 4 bars for all the cores. Before this pressure was reached, air intruded
into the capillary contact powder between the core and the porous disk, and proper
readings were unfortunately lost.

Three centrifuge runs were made with the following grouping of cores,

Run 1 Cores 1D, 2.5E, and 5E,
Run 2 Cores 3, 8, and 9,
Run 3 Cores 5, 6, 10.

The results are shown in Table A-4. Note that the capillary pressures in each
subtable correspond to the saturations in the first column. To find the capillary
pressure for the other two columns, adjustment for the factor (r — r?) has to be
made according to Eq. 2. In the tables, S, is the average equilibrium saturation
in the core at each centrifuge frequency. These are actual, unprocessed data deter-
mined from the produced volume of water, without smoothing. We have measured
extraordinarily many datapoints in order to check the sensitivity of the Volterra

method to the frequency stepsize.

Forced Imbition

The data from the three cores 4-1.6wa, 7-1.6wa, and 8-1.na given in Appendix B,
in Table B-1, originate from forced imbibition in a centrifuge, following a sequence
of drainage and spontaneous imbibition. The cores are from a North Sea sandstone
reservoir, and the study was part of an effort to determine the wettability preference.

The table contain actual, unprocessed data determined from the produced vol-
umes of oil in an inverted bucket in the centrifuge.

Analysis

Interpretation and analysis of the data were made with the computer program
Mathematica [10]. About 50 seconds are required to process one of datasets in
Table A-4 on a Macintosh SE/30, including smoothing, averaging, and plotting of
input and output.

Experimental errors in centrifuge readings may cause oscillation in the inter-
preted results. The data are therefore smoothed before interpretation. A least-
square parabola is fit through five neighboring points, and the quintuplet is point-
wise moved through the dataset.

After interpretation, the results are routinely averaged according to Eq. 9. For
smooth experimental curves and artificial data, the averaging is superfluous.

Drainage

In Appendix C, Figs. C-1, C-2, and C-3 are shown the results of the interpretation
of the 9 datasets in Table A-4. For each core sample, three types of data are plotted
(Note that the value axis start at -0.5 bar, to increase readability).
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The fully drawn curve shows the mercury injection data, Table A-3, adjusted
for the difference in surface tensions between air-mercury and air-water, Table A-1.
The conversion factor was found by least-square fitting an expression of the form
S = a/p. + b to both the mercury and the porous diaphragm data over the same
saturation interval, starting at the first saturation below 1.0 and limited by the
range of the porous diaphragm saturations. The conversion factor in Table A-2 is
the ratio between the a-values in the two cases. It is applied to all the mercury data
to convert them to the equivalent air-water system. In the plots, the o’s represent
the centrifuge results, and the A’s the porous diaphragm data directly.

The nine cores represent a variety of capillary pressure curves, and the general
agreement between the centrifuge results and the converted mercury data is very
satisfactory, for all cases.

For Core 3, a separate plot is shown in Fig. C-2 to demonstrate the effect of
averaging the results according to Eq. 9. The fully drawn curve represents the
averaged saturations, while the circles mark results with no averaging. The points
oscillate slightly, especially at low saturations. The effect is minor due to smooth
input and dense sampling.

The effect of reducing the number of datapoints is shown in the plots for Cores 5
and 8, where the squares represent interpreted results after reducing the number of
datapoints to six, for both cores; Table A-4, table entries (5,8,11,14,17) for Core 5;
and (6,9,12,15,18) for Core 8. The reduced dataset fairly well traces the converted
mercury curve for Core 5. For Core 8, the bend is not properly represented by the
reduced number of points.

Forced Imbibition

In Appendix D, Fig. D-1 is shown the interpretation of the data in Table B-1, with
straight lines drawn between the interpreted results after averaging. Each case has
six datapoints, and a fairly smooth curve is produced by the same Mathematica
computer program as for drainage.

Only the final result is shown for Core 8-1.na. For the other two, the interpre-
tation is presented with and without averaging. The averaging procedure is clearly
superfluous for Core 7-1.na, but necessary for Core 4-1.6wa, where oscillations take
place, probably caused by less accuracy in measured data.

Discussion

From the results in Appendices A and B, and similar experiments, we recommend
that the number of datapoints from the centrifuge should not be less than 5-6. If
the capillary pressure curve has marked characteristics, higher density of datapoints
is necessary to catch the fine structure of the curve. It is difficult to give general
advice regarding the data sampling procedure. We have experienced, however, that
increasing the frequency by a constant factor seems to give reasonable results.
Inaccuracy in the reading of produced volumes from the centrifuge may create
oscillations in the interpreted results. The accuracy in a visual reading is typically
40.125 cm3, and may be about 10 % of the first measurement. An automated
centrifuge, as described by Torszter and Munkvold [11], may increase the accuracy
to £0.03 cm3, and reduce the need for smoothing the data and the results. The
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problem with the smoothing is, of course, that it may eliminate any fine structure
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in the capillary pressure curve, e.g. two-porosity systems.

All the drainage curves reported here were interpreted with the modified Hassler
and Brunner method and gave results in very good agreement with those of the

Volterra method, Hermansen [4].

Conclusions

A direct, numerical method is developed to extract the capillary pressure curve

from centrifuge data. The method is validated by interpretation of artificial data

and by comparison with the porous diaphragm and mercury injection methods.
The applicability of the method is demonstrated by interpretation of a series of

measured drainage and forced imbibition data.

Nomenclature

i

Qv €ebPeunnted P 332 oo
|

Subscripts
(4]
d —_

-
[T

k
|

arbitrary constant, bar

arbitrary constant, dimensionless

r1/r, for drainage

r9/r1 for forced imbibition

number of frequencies in a centrifuge run
counter for readings in a centrifuge run
radius from center of centrifuge, m
radius to inner boundary of core, m or cm
radius to outer radius of core, m or cm
pressure, bar, mb, or Pa

saturation, dimensionless

average saturation, dimensionless

defined by Eq. 8a

difference operator

porosity, fraction

angular frequency, rad/s

density, kg/m3

parameter in Eq. 10, bar

surface tension, mN/m

= capillary

displacement

counter of iterations, or intervals
irreducible

counter of intervals

= water

g
!
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Superscripts

* = result from interpretation, not averaged
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A Drainage Data

Table A-1: Physical properties of the nine Berea cores used for drainage experiments
with centrifuge, porous diaphragm, and mercury injection

Physical Properties of Cores
Coreid | ™ | r2 | ¢ | ¢ k pg | Thg-air®
em [ em | % % md | kg/m3 | Cw-air
1D 453 19381194 | 19.4 | 217.0 2650 7.75
2.5E 452 1 9.38 | 21.7 | 21.6 | 715.0 2650 9.22
3 6.06 | 8.60 | 21.0 | 21.0 | 609.0 2650 8.98
5 4541938 | 17.8 | 17.6 76.5 2650 7.74
5E 4.52 1 9.38 | 22.9 | 22.7 | 855.0 2650 9.05
6 439 19.38116.9 | 17.8 53.9 2630 4.68
8 6.05 | 8.60 | 20.0 | 20.1 | 259.0 2650 7.43
9 6.06 | 8.60 | 23.0 | 23.2 | 996.0 2650 . 7.39
10 446 |1 9.38 | 16.5 | 19.9 8.5 2660 8.02
%cores
bsubsamples
Ccurvefit

Table A-2: Air-water capillary pressure measured on the nine Berea cores by the
porous diaphragm method

Pe Water Saturation

bar 1D 3 2.5E 5 5E 6 8 9 10
0.05 [ 1.000 0.803 0.884 1.000 0.640 0.965 1.000 0.686 1.000
0.10 | 0.813 0.455 0.508 0.936 0.425 0.904 0.746 0.499 1.000
0.30 | 0.345 0.230 0.225 0.759 0.236 0.638 0.330 0.236 0.948
0.60 | 0.263 0.178 0.196 0.360 0.183 0.455 0.253 0.188 0.707
1.0 1 0.216 0.151 0.157 0.304 0.154 0.364 0.199 0.147 0.528
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Table A-3: Air-mercury capillary pressure measurements for the nine Berea cores.
Saturations to be adjusted to core porosity, Table A-1

Pe Mercury Saturation [%)]

bar 1D 3 25E b 5E 6 8 9 10
0.28 — 05 0.3 — 03 04 — 03 —
038 03 1.7 14 02 21 21 05 3.8 —
048 ( 0.6 101 144 — 342 56 11 385 —
058 1.2 310 425 1.1 520 95 21 525 —
068 | 3.1 — — 27 — 135 6.7 — —
0.78 | 13.4 542 617 82 631 177 227 623 02
0.88 | 30.9 — — 189 — 219 371 — —
1.08 | 470 639 684 342 684 28.0 503 675 0.5
1.28 — — — 428 — 33.0 —
1.58 | 60.1 701 73.4 495 728 38.8 618 717 1.6
1.78 — — — — — — — — 24
2.08 | 66.0 729 761 549 765 475 66.1 741 4.2
2.58 | 68.1 — — 587 — 527 68.9 — 10.6
3.08 — 767 794 — 789 554 — 774 179
3.58 | 71.7 — — 627 — — 724 — 240
4.08 — — — — — 604 — — 288
508|751 80.5 829 668 824 63.7 756 813 357
6.08 - — - = = - —  — 391
8.08 (789 834 854 714 851 69.4 794 83.6 442
12.1 1822 855 87.6 747 873 T73.9 826 857 49.3
17.1 [ 846 870 88.8 77.3 89.0 774 845 86.9 53.4
25.1 | 87.1 88.3 904 80.2. 90.5 80.9 86.4 883 57.7
35.1189.0 89.6 91.5 827 914 83.7 886 89.6 6l1.1
50.1 1 90.6 90.8 925 856 925 86.2 90.1 90.5 64.4
70.1 1920 91.7 933 878 933 883 915 91.6 674

100.0 | 936 929 943 90.2 942 90.7 929 928 70.8

140.0 | 947 949 949 91.8 948 921 93.8 93.7 733
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Table A-4:
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De
3a

Sw
3

Su  Su
8 9

0.011
0.022
0.031
0.060
0.074
0.093
0.124
0.188
0.292
0.433
0.643
0.895
1.277
1.764
2.432
4.069
5.140
6.820
8.530

1.000
1.000
1.000
0.981
0.977
0.938
0.840
0.719
0.571
0.454
0.375
0.329
0.285
0.231
0.211
0.168
0.160
0.133
0.129

1.000 1.000
1.000 1.000
1.000 1.000
0.988 0.983
0.979 0.957
0.950 0.885
0.843 0.784
0.706 0.630
0.566  0.497
0.462 0.392
0.396 0.320 |
0.343 0.281
0.298 0.245
0.260 0.209
0.228 0.190
0.210 0.173
0.190 0.162
0.174 0.140
0.166 0.133

2Adjust 8 and 9 for (r% - r?)

Data from centrifuge experiments

Pc
50

Sw
5

Sw
6

Su
10

0.069
0.101
0.129
0.147
0.189
0.200
0.236
0.291
0.337
0.407
0.496
0.686
0.968
1.356
1.950
2.839
3.959
6.190

1.000
1.000
1.000
0.961
0.895
0.879
0.804
0.724
0.669
0.619
0.562
0.512
0.432
0.395
0.348
0.315
0.277
0.253

1.000
1.000
1.000
0.940
0.896
0.846
0.791
0.753
0.730
0.670
0.591
0.516
0.451
0.386
0.348
0.308
0.269

1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.988
0.982
0.964
0.939
0.866
0.733
0.648
0.561
0.488
0.426
0.363

@Adjust 6 and 10 for (r2 — r2)

Pe
1D®

1D

S Su
5E

2.5E

0.024
0.035
0.051
0.069
0.099
0.126
0.173
0.233
0.330
0.497
0.741
1.052
1.456
2.088
3.173
4.704
6.151

1.000
1.000
1.000
1.000
1.000
0.962
0.851
0.649
0.587
0.486
0.404
0.342
0.328
0.260
0.236
0.203
0.183

1.000 1.000
1.000 1.000
1.000 1.000
0.974 0.950
0.829 0.784
0.742 0.676
0.611 0.556
0.532 0.465
0.427 0.373
0.344 0.303
0.265 0.257
0.226 0.212
0.213 0.199
0.178 0.170
0.151 0.141
0.134 0.124
0.125 0.116

2Adjust 2.5E and 5E for (r3 — r?)
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B Forced Imbibition Data

Capillary Pressure [bar]

465

Table B-1: Forced imbibition data from a North Sea sandstone reservoir

Forced Imbibition Data
4-1.6wa 7-1.6wa 8-1.na
T2 T1 T2 1 T2 T
0.1663 0.115 | 0.1663 0.1213 | 0.1663 0.1214
Pe [mb) Sw | pc [mb] Sw | pe [mb] Sw
-56.3 0.6434 -35 0.5682 =35 0.4776
-121.1  0.7430 -70.7  0.5903 -70.6 0.5239
-256.2 0.7928 | -143.0 0.7233 | -142.8 0.6269
-546.7 0.8346 | -290.8 0.8013 | -290.2 0.6918
-1173.8 0.8512 | -589.3 0.8234 | -588.2 0.7477
-2501.6 0.8758 | -1187.4 0.8456 | -1185.2 0.7761
Interpreted Data —Drainage
6,0 T T T T 6,0 T T T T
1 ]
55 lo . 55F o Core 2.5E .
Core 1D 1 -
50 1 5,0 .
45F h 45 -
40 o - Mercury - 4,0 o Mercury -
A Diaphragm 1 A Diaphragm
3st [o] Centrifuge 35 [o] Centrifuge
301 'E' 3,0 -
8, .
L D
25 £ 2s .
a
2o0r e 20 .
a
15 E 15
10 8 10
o5 05
oor 0,0
-0'50,0 0,2 0,4 0,6 08 1,0 .0'50_0 0.2 04 0,6 0,8 1,0
Saturation Saturation

Figure C-1: Interpreted results for drainage of Core 1D and 2.5E
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Figure C-2: Interpreted results for drainage of Core 3, 5, and 5E; Core 3 with and
without averaging
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Figure C-3: Interpreted results for for drainage of Core 6, 8, 9, and 10
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Figure D-1: Interpreted results for forced imbibition of Core 4-1.6wa, 7-1.na, and
8-1.na



