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SIMPLE AND ACCURATE METHODS FOR CONVERTING CENTRIFUGE DATA INTO 
DRAINAGE AND IMBIBITION CAPILLARY PRESSURE CURVES 

P. Forbes, Institut Frangais du Petrole, 1-4 ave. de Bois Rkau, 92500, Rueil-Malmaison, France. 

ABSTRACT 
There are various methods to reduce drainage 

centrifuge data to capillary pressure curves. Simple 
methods usually lead to poor accuracy in the results, while 
accurate methods, usually longer to operate, need to 
smooth, fit, average or force the experimental data in a 
given analytical form . This could be questionable and lead 
to significant errors in computed capillary pressure curves 
and consequently in computed irreducible saturation. 

This paper first deals with an accurate method 
which is rapid to process, if the drawbacks of fitting the 
data in a given analytical form are accepted. The method 
also allows the corrected USBM wettability index to be 
calculated easily directly from the raw centrifuge data. 

Second an accurate, very rapid and simple method 
is proposed. It allows to convert experimental data, even if 
they are noisy or few. It needs no smoothing, fitting, 
averaging or forcing of data, or of result, in any given 
form. Therefore it is believed to produce capillary pressure 
curves which correspond more closely to the centrifuge 
data than the curves which may be obtained from most 
other methods. The method applies to both drainage and 
imbibition centrifuge data. It is even simpler for 
imbibition. 

Our first and second methods are demonstrated on 
both artificially generated and experimental data. 

INTRODUCTION 
The centrifuge has been extensively used to 

determine capillary pressure curves, Pc(S), for core 
samples since Hassler and Brunner [I] and Slobod et al. [2] 
formulated the theory and practice of the method. It is, 
however, still problematic as it requires the transformation 
of the centrifuge fluid production data into local saturation 
values. The transformation is related to assumptions on 
the physics of fluid displacement during centrifuging and 
to the inversion of a fundamental equation between local 
saturation S (PC) and experimental centrifuge data [I]. 

The validity of physical assumptions (outflow 
capillary boundary condition, no cavitation, equilibrium 
time value, end-piece effects, homogeneity of the core, 
etc.) was recently reviewed by O'Meara et al. [3] and 
Hirasaki et ai.[4]. We do not discuss these problems here 
but focus only on the solution of the fundamental 
equation. 

The centrifuge method consists in measuring 
average saturation versus capillary pressure Pcl at the 
inlet face of a sample (Fig. 1) at equilibrium during 
rotation at various angular velocities a. 

From Hassler and Brunner f 1] to Hermanssen et 
al. [5] more recently, the formulation of the mathematical 
link between S ( ~ c 1 )  and local saturation S(Pc) can be 
summarized as follows: the main assumptions are that 
hydrostatic equilibrium is reached in each phase and that 
boundary condition Pc=O is effective at the outflow face. 

For drainage experiments (wetting phase 
saturation decreasing) capillary pressure at a position r is 
pC=l/2 ~p ( $ 1 ~ ~ -  r2) . (1) 
Ap is the difference between the phase densities. Average 
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saturation is related to S by 3-- j~(r)dr . (2) (r2-r I)* 

Substituting PC for r from (1) and eliminating Ap w2 
1 from Pcl- Ap 02(r22- r12), equation (2) leads to 
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For imbibition experiments (wetting phase 
saturation increasing) the same equation is obtained when 

exchanging r l  for r2, ~ = l - p ) * ,  and Pcl for Pc2 [5, 171. 
r;! 

For both drainage and imbibition, the problem consists 
therefore in inverting equation (3) to obtain S(pc) from - 
S(Pcl), usually known as a finite number of discrete 
experimental values. 

USUAL SOLUTIONS FOR THE CENTRIFUGE 
EQUATION 

Numerous papers have proposed various 
approximate solutions to equation (3) (see for instance [6] 
or [7]). Solutions can be classified into two kinds : those 
which require both differentiation and integration and those 
which require differentiation only. Approximate solutions 
of the second kind are for instance : 

S =sHB=3 +pcK , Hassler and Brunner [I], 
dPcl 

- 
s =SH =- 2G (3 +pcdS), Hoffman [8], 

l + G  dPc 1 
- 

- 2 G  ds 
S =SD =S +- PC-, van Domselaar [9] . 

1 dPcl 
Such solutions can be operated rapidly, from an S 

dataset, using - conventional differencing schemes to assess 
ds 

derivative - ([lo], for instance). Unfortunately they are 
dPcl 

accurate only for B<<1 (rl=r2). Approximate solutions of 
the first kind are more accurate but require additional 
integration. This is operated numerically according to 
usual numerical calculus by iterative processes or operated 
analytically forcing the data in a given analytical form [l, 
6 ,  7, 11 to 171. Some solutions are accurate only for a 
restricted range of B or PC values. Most are time 
consuming or, if they are not, could be questionable 
because of the choice of the analytical form which they 
use to fit data. Indeed, as a common feature, the 
proposed methods use fitting or smoothing of datasets 
or (and) fitting or averaging of computed solution S. This 
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