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Abstract.

Two different approaches for core-log integration are presented - one
based on a modified Leverett technique and another on Partial-Least-
Squares-regression. Data illustrating the techniques originate in a North
Sea sandstone reservoir of Jurassic age. Special core analysis data
covering three formations consist of air/water capillary pressure (0O-
15bar) versus saturation, porosities (12-29%), and permeabilities (1.5-
2200mD) measured on 23 core plugs. These data constitute a wide-spanning
training sample. Subsequent predictions of heights above free water level,
saturations or permeabilities are based on conventional core and/or log
data.

A traditional Leverett analysis indicates no unifying J-function when
applied to the actual data set - systematic permeability trends are
pronounced and the possible grouping of individual J-functions has little
relation to reservoir units. In consequence, a modified J-function
formalism is established. This makes use of scaled capillary pressure and
effective water saturation in combination with another permeability
dependence while the porosity is discarded. The resulting function is
closely fitted to a power function of the effective water saturation. With
the data in question this fit showed a correlation coefficient of 0.96 as

compared to 0.82 for a similar Leverett procedure.

Compared to the above trial and error procedure, a PLS-regression unifies

the training data more stringently while the data structure is efficiently
analysed through loadings and scores plots. The PLS-regression establishes
training models with correlation coefficients of about 0.97 when capillary

pressure or effective water saturation are response variables. Pointing
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out that permeability is the overall dominating predictor variable while
porosity plays a minor role the PLS-analysis is in agreement with the
first technique. Permeability prediction is more uncertain (r=0.82).
Relatively little additional variance is accounted for by variables other
than porosity. However, the other variables may influence permeability

predictions positively.

Because the underlying mathematical problem is almost linearized by
pertinent transformations both types of modelings are unaffected by non-
linear effects. Therefore, the associated prediction evaluations and error
analyses are reliable. It is also noteworthy that the two independent
approaches agree mutually within computed limits of accuracy. Although the
obtained numerical results may only have validity for the actual field,
the analyses show that the two techniques have practical potentials for
unifying wide-spanning capillary pressure measurements. Examples based on

real data illustrate the applicability of the techniques.
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Introduction.

Several methods which interrelate initial water saturations, height above
free water level and fundamental petrophysical parameters are available
for integrated formation evaluation. Among these the Leverett J-function
approach (Leverett,1941) which connects capillary pressure, permeability,
and porosity to water saturation is the most established technique.
However, the method can be inaccurate in its predictions especially if the
permeability spectrum is wide. Systematic deviations between modelled and
measured data are often seen and the square-root of permeability to
porosity ratio as inherent to the J-function is not universally
applicable. Underestimating the permeability dependence on capillary
pressure curves has previously been reported (Purcell,1949; Swanson, 1981;
Johnson,1987). Consequently, a number of mathematical techniques which
allow for different permeability functionality has been reported in the
literature (e.g. Heseldin, 1974; Alger et al.,1987; Johnson,1987).

The present paper contributes to the row of available techniques by
presenting two alternative methods: a modified Leverett approach and a
method based on Partial-Least-Squares-Regression. The first method is
based on a trial-and-error model building while the second modelling
relies on more stringent statistical data analysis. Though different in
approach the two methods produce similar results. The overall purpose of
the presented analyses is to demonstrate that calibration models can be
accurately established from SCAL-data and that predictions of important
parameters e.i. height above free water level, initial water saturation,
and permeability can be done within reasonable limits of accuracy by use

of conventional core and log data.
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Data.

The data which are used in the present study relates to a North Sea
sandstone oil-reservoir of Jurassic age. Generally, the main reservoir is
heterogeneous. Permeabilities vary from a fraction of a millidarcy to well
above one darcy while porosities cover values from about 10% up to 30%
with an average of about 20%. Special core analysis data (SCAL),
conventional core analysis and wireline logging data from one of the cored
wells (Well-A) are used in the study. The SCAL data constitute a basic
sample of calibration data. Most of the SCAL core plugs are from the main
reservoir but a few originate in surrounding formations. The data comprise
porous-plate gas/water capillary pressure data (Pc=0.1,0.5,1,2,5,15 bar),
Klinkenberg corrected air permeabilities and helium porosities as measured
on 23 (1.5" diameter, 2" length) core plugs. The maximum vertical distance
between depths of SCAL plugs is more than 300m. The actual capillary
pressure curves and permeabilities are shown in figure 1. As the
associated porosities are between 12% and 29% the calibration sample is
considered to span the reservoir characteristics effectively. Conventional
core analysis data sampled with three plugs per metre consist of
Klinkenberg corrected air permeabilities and helium porosities as measured
on 1" diameter plugs. The applied wireline data are log derived porosity,

water saturation and permeability.
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Modified Leverett calibration analysis.

Initially, the SCAL-data were modelled according to conventional Leverett
analysis (Leverett, 1941). To be of practical application one or more J-

functions defined by
J = constant'P_- v k/¢ (1)

should unify the measured SCAL-data within reasonable geological or flow-
related zones. The J-function is computed for each core plug and plotted
versus vater saturation (figure 2). The plot indicates that three
Leverett-groups are present in the data. However, it is not possible to
relate this grouping to the established geologic/flow units of the
reservoir. An inaccurate calibration model is defined if all data are
unhamperedly forced to be described by a single J-function as shown in
figure 3. Subsequent approximation of the J-S -relationship by a power
function correlates poorly (r=0.882). The obvious scatter of data
illustrates that the practical use of Leverett J-functions is questionable
in the present case and in that respect the actual reservoir data are not

unique.

In the following, the ideas of a unifying function is followed up. But now
one’s demands of dimensionless form of the unifying function is reduced
and other permeability/porosity dependencies are allowed. The first
investigations are carried out by trial-and-error methodology and visual
optimization. Not surprisingly, the effect of porosity variation seems
small while permeability shows up as the dominating parameter.
Consequently, any porosity dependence is discarded in the description and
various permeability dependencies are tried out. In addition, the
effective water saturation Sw* is introduced as suggested by Jennings
(1987)

S, = (8,-8,,)/(1-S_.) (2)

A pseudo S,; defined as O.95'SW(PC=15bar) wvhich is highly correlated to

the permeability is used in this study.

An improved step towards defining a unifying function is shown in figure

4. It appears that the bunch of individual curves at that stage can be
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considered to originate in a single unit. The cost of this is that
irreducible water saturations have to be introduced in combination with a
change in poro-perm dependencies. It also appears that the curves are non-
linear in the bilogarithmic plot. This is a severe drawback as traditional
linear curve fitting techniques will produce systematic deviating models.
However, a relationship close to linearity is derived by simply adding a
constant value to the capillary pressure. Further trial-and-error

optimization leads to the following modified Leverett function
Y = (PC+O.8)'k°'174 (3)

This function is plotted versus Sw* in figure 5 and the data points are

subsequently fitted to a power function:
Y = 1.69°s "0 ¢7¢ (4)

The substantial increase of the correlation coefficient of this power fit,
as compared to the one of figure 3 (0.96 contra 0.82), reflects an
improved modelling. The main improvement of the functional fit is due to
the incorporation of irreducible water saturations. But SCAL-data from the
entire reservoir and two surrounding and different sandstone sequences

have been effectively unified through the simple Y—Sw*—relationship.

An essential feature of the modelling is that logarithmically transformed
data (1og10(k,Sw*,Pc+O.8) approximately lines up along a plane according
to equation (3) and (4). This is visualized by the 3-D plot in figure 6
where the viewpoint is approximately located along the edge of the plane.
It is stressed that equation (3) is not an objectively optimized function
- it is based on a trial-and-error procedure combined with visual
optimization. But in combination with equation (4) it defines an accurate
model, is of practical application and is equivalent to the Leverett

approach.
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PLS-regression calibration analysis.

More stringent mathematical treatment of the problem is possible. Linear
modelling (e.g. Multiple-Linear-Regression) of the types reported by
Heseldin (1974) and Alger et al. (1987) have been applied to the present
data but the resulting models showed pronounced systematic deviations
between predicted and measured data. This is basically caused by the non-
linearity of the problem even when logarithmic transformations are applied

to the original data. In consequence, associated error analysis will fail.

To minimize these problems the Partial-Least-Squares-regression technique
(PLS) is applied in combination with the experience gained in establishing
the modified Leverett approach. A thorough discussion of the PLS method
lies outside the scope of the present paper; suffice to three central
references (Martens and Naes,1989; Geladi and Kowalski, 1986; Beebe and
Kowalski, 1987) expounding this new chemometric method in full detail.
Esbensen and Martens (1987) presented a pilot PLS-application on poro-perm
prediction directly from wireline log data. Referring to this background
literature, it has been shown that PLS may be viewed as one of the most
generalized multivariat regression techniques with superior control over
both collinear instabilities as well as model errors vis-—a-vis MLR and
related techniques. In the present case where only one parameter is to be
modelled/predicted at a time, PLS compares rather closely with the more
well-known Principle-Component-Regression (PCR) method only PLS often
reaches a solution with (significantly) fewer components than PCR. This
makes PLS superior with respect to interpretations a.o. To fully evaluate
a prediction model with a training set as small as 23 objects one must use
cross-validation i.e. the individual model validations are based on the
same set of objects as those used in the calibration, but for each model
one object is kept out of the calibration, and saved for prediction
testing. Full cross-validation works its way through the training set of
23 objects by establishing 23 sub-models, each consisting of 22 objects -
with a final average model variance calculation. This procedure results in
a complete internal statistical prediction evaluation equivalent to that
of the entire training sample to the ratio 22/23 with realistic prediction
error estimates. All "variance plots" below (figures 7,9,11, and 14) stem

from these full cross-validations.

Four parameters are assumed to be interrelated in the process of building
7
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the models - ¢, k, P_, and Sw*. Depending on the way of presenting the
problem three of these can be considered as predictors (X) while the
fourth acts as the response (Y). Three different models will be of

practical interest:

X Y
Model 1: (2,k,8.") --> P_
Model 2: (&,k,P) -->8° (5)
Model 3: (&,P_,S. ") -> k

After establishing model 1 capillary pressure or height above FWL can be
predicted. Similarly water saturation and permeability can be predicted

from model 2 and 3 respectively.

Prior to calibration modelling the original parameters are transformed

according to:

¢ --> log, (%)

k  --> log, (k) (6)

st --> 1og10(Sw*)

P, - 10g10(Pc+0'5)

The previously applied SCAL-data constitute the PLS calibration sample.
The PLS calibration results for model 1 are shown in figure 7 and 8.
Figure 7 (upper left) shows that two PLS-factors are sufficient to define
the regression and 94.4% of the original Y-variance (basically P_ related)
has been modelled. Only 5.6% Y-variance has not been accounted for. From
figure 7 (lower left) it appears that 80% of the X-variance (after two
PLS-factors) has been used to model the Y-variance. This means that 20% of
the X-variance has no relation to P_. Figure 7 (upper right) presents the
score plot belonging to the first PLS-factor. Roughly speaking, this is a
cross-plot of the most important part of the Y-parameter (ul - basically
P_) and the most important part of the X-parameters (tl - a combination of
¢, k, and Sw* but mainly Sw* as will appear from figure 8 (upper)).
Similarly, figure 7 (lower right) shows the score plot belonging to the
second PLS-factor. Still a strong correlation between X- and Y-parameters
exist so the parameter combination related to the second PLS-factor
contributes significantly to the model. Contrary to this the third factor

(not shown) does not.
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The loading plot shown in figure 8 (upper) expresses the relation between
X-variables and PLS-factors. Sw* gives the main contribution to the first
PLS-factor and nothing to the second. ¢ and k contribute to both factors
and they act in the same direction. The latter conclusion is in
contradiction to the Leverett approach and this explains why porosity
could be left out in the modified approach. In the PLS formulation ¢ and k
"support" each other in the same direction. Figure 8 (lower) shows the
correlation between measured and predicted data - in terms of

log, ,(P_+0.5). The linear correlation is strong (r=0.971) implying that an

accurate calibration model has been established.

A similar analysis applies to model 2. Referring to figure 9 and 10 two
PLS-factors are sufficient to define the PLS-regression model - 95.2% of
the Y-variance is explained by 80% of the X-variance. Not surprisingly,
the dominating predictor is related to P_. The correlation coefficient of
the regression between measured and predicted data is high (0.976) so this

calibration model is also accurately determined.

A third calibration model for permeability prediction may also be
established, but the results are more uncertain. According to figure 11
and 12 only 68.9% of the Y-variance can be explained by two PLS-factors.
As nearly all X-variance (95%) has been used additional information must
be supplied if a better model is required. Porosity is the main predicting
parameter but the other parameters contribute as well. Thus permeability
can not be predicted with the same accuracy as height above FWL and water
saturation as quantified by the fairly low correlation coefficient
(0.824). Not much better accuracy of permeability modelling is to expected
considering that few static predictors are forced to model a dynamic

parameter which in addition relates to a very heterogeneous reservoir.

Three different PLS-calibration models which are based on SCAL-data have
been established at this stage. The first two form models for accurate
predictions of height above FWL and water saturation while the third
predicts permeability with some inherent uncertainty. No final procedure
has been established for permeability predictions by the achieved model as
iterative modelling is required. Thus only the two other developed PLS-

models are dealt with in the following section.
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Applications.

Various applications of the calibration models are illustrated in the
following. An example of how centrifuge capillary pressure measurements
fit the modified Leveretti model is given and predictions based on

theoretical and real data are presented subsequently.

Various methods for determining capillary pressure curves are at hand. For
the present field porous plate, centrifuge and mercury-injection
techniques have been used. It was decided to restrict the present
calibration analysis to data which are considered to be mutually
consistent. For this reason porous plate measurements related to a single
well were chosen. However, centrifuge capillary data are available from
other wells in the field. To test the consistency between these data and
the original calibration sample figure 13 applies. Here Y(Sw*) data as
derived from the centrifuge data are plotted together with the porous
plate calibration data. The additional data act as an excellent test
sample and the plot indicates that the calibration models are valid for

the entire field.

Theoretical tests have been performed to evaluate the precisions
associated with predictions of heights above free water level (H) and
water saturations (S ). The input permeabilities are arbitrary standard
values while porosities and irreducible water saturations are typical
estimates related to the actual field. Results are plotted in figure 14.
The left part of the figure shows the PLS predictions results. The error
bars which are standard PLS prediction errors indicate that H and S can
be predicted within narrow limits of accuracy. It is also noticed that the
magnitude of uncertainty is dependent on the values of prediction
parameters with the largest uncertainties associated with the extremes.
The right part of figure 14 presents curves which are predicted by the
modified Leverett technique. The positions and magnitudes of the error
bars are those determined by the PLS-technique however. Generally, the two
different types of approaches agree within the PLS-computed limits of
accuracy and reasonably precise estimates of H and S  can thus be obtained

by either methods.

Predictions based on real data are related to Well-A. Figure 15 shows

predictions of height above free water level as a function of depth. The
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depth parameter (D) is expressed as height above an arbitrary level. The
input parameters are permeabilities (a ¢-k relation) and vater saturations
as derived from logs. The reservoir base is at D=15m and two calcite
cemented layers are centered around D=23m and D=27.5m. No OWC is detected
in the well. The predicted heights show a trend which suggests FWL to be
situated at depth D=Om, although the curve is very spiky. This is due to
the actual layering of the reservoir, different resolution or scaling of

the logging tools and insufficiently precise depth matching.

Comparison of log derived water saturation and saturation predicted by the
modified Leverett function are shown in figure 16. Input parameters are
permeabilities from conventional core analysis and an assumed free water
level at H=Om. In the reservoir section (H>15m) the two curves show no

serious discrepancies.

A similar PLS-prediction is shown in figure 17. Here the depth interval is
the same but depths are numbered from 1 to 10l1. Input parameters are
porosities and permeabilities as determined by logs in combination with an
assumed free water level. The PLS-predicted water saturations and its PLS-
computed upper and lower error bounds are presented in the figure. Again
the predicted saturations show good agreement with log derived saturations
within the reservoir section. The PLS computed errors curves are important
additional information which give a realistic impression of the precision

of PLS-predicted water saturations.

11
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Conclusions.

Two different techniques for core-log integration have been developed. The
first is a modified Leverett technique and the other is based on Partial-

Least-Squares-regression.

Both approaches unifies a wide range of SCAL-data which originate in a
well penetrating a very heterogeneous North Sea sandstone reservoir.
Additional capillary data from other wells indicate model consistency
within this field.

The modified Leverett approach defines a permeability and capillary
pressure dependent function which can be accurately fitted to an effective

water saturation based power function.

Three PLS calibration models are established. From the PLS models height
above free water level, water saturation and permeability can be
predicted. The first two of these are very accurately determined while the

third is less accurate.

The PLS calibration models are analysed in details by interpreting plots
of variance, scores, loadings, and measured versus predicted data. Full
cross-validation of these models ensure complete statistical control of

the prediction accuracies and precisions.

Applications are illustrated by predicting height above free water level
and water saturation. Theoretical input data show that the techniques
predict similarly and that results can be obtained within reasonable
limits of precision. Examples of predictions based on real data show good

agreement with log derived evaluations.

Thorough calibration on representative data of high quality is the
indispensable condition of accurate predictions. With this in mind the
developed techniques have obvious potential for quick and direct
predictions of height above free water level, initial water saturation and

to some extend permeability from logs and core data.

12
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Nomenclature.

® : Porosity

k : Klinkenberg corrected air permeability
P : Capillary pressure

[e]

S, ¢ Water Saturation

Sw* : Effective water saturation
S,; ¢ Irreducible water saturation
J : Leverett function

Y : Modified Leverett function

H : Height above free vater level
D : Depth

FWL : Free water level

OWC : 0il water contact

13
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Figure 8. PLS calibration model 1. Upper: loadings of X-variables shown
for first and second PLS-factor. Lower: predicted versus

measured data.
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Pigure 10. PLS calibration model 2. Upper: loadings of X-variables shown
for first and second PLS-factor. Lower: predicted versus

measured data.
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Figure 12. PLS calibration model 3. Upper: loadings of X-variables shown
for first and second PLS-factor. Lower: predicted versus
measured data,

23



1992 SCA Conference Paper Number 9216

Loadings
2.0+ ,
(PHLSw*,Pc*) k
PLS1 X-Validation
1.5
1.0- PHI
Pc*
0.5 1 Sw
2
2 1 —l
0+ ‘ ‘
l 1
5
2
0.54
-1.04
I X-variables |
o L S S SRR
-1 1 4
|
TEST Z, factor: 12 J

n CVS: Predicted (with 2 factors) Regress, Offset Corr.
0.689 0.576 0.824
(PHI,Sw* Pc*) k
34 PLS1 X-Validation
2__
1ﬁ
¥
OA
14
Measurﬂ‘
I i e e I L A S B A
-1 0 1 2 4
TEST z, Y-var: lo(per)

Figure 13. Comparison'of calibration determined Y(S_') and additional
centrifuge based data.
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North Sea Well-A. North Sea Well-A.
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Figure 16. Comparison betveen log derived and predicted vater saturation
(s,). D is the depth above an arbitrary level. Base of
reservoir is at D=15m. Predictions are based on the modified

Figure 15. Prediction of height above FWL (H) at various depths (D is
measured as height above an arbitrary level). Base of reservoir

is at D=15m. Input data are log derived permeability and water

saturation. Leverett technique and conventional core data.
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Figure 17. Comparison between log derived and PLS predicted water
saturations. PLS computed error curves are included. Input data
are based on log derived permeability and water saturation.
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