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Abstract. The general analysis for various methods of the interpretation of two-phase steady- 
state flow experiments is offered. The experimental technique is especially organized in the way, 
when the convective flow is equilibrated by the capillary counter-flow. We differ integral and 
bstributed methods. The fact that two classes of methods are based on the same differential 
equation is proved. This allows to develop a similar technique for both classes. We offer three new 
versions of methods lading to the full determination of both relative permeability curves, as  well 
as the capillary pressure. The first version corresponds to integral class and is based on the 
techtllques offered by Rarnakrishnan and Cappiello. The second version is a combination of 
distributed and integral methods; the third one is a half-parametric pureIy dstributed version, 
malung use of some theoretical laws for singularly behavior of the saturation distribution nearly 
the sample end. 

The case is especially examined, when relative permeability curves depend on flow 
velocity. Thls situation is appropriated to the gas-condensate mixture flow, in particular. The half- 
parametric distributed method is enable to solve this problem. 

1. INTRODUCTION 

Capillary pressure functions are generally obtained by the static methods, such as 
centrihge or porous plate. The dynamic methods (Brown, 1951) are applied to  the relative 
permeability determination. The new type of methods for the determination both the capillary 
pressure and the relative phase permeabilities has been offered in the paper of Ramakrishnan and 
Cappiello (1991), and was after developed by Lenormand, Eisenzirnrner and Zarcone (1993) as a 
"semi-dynamic" method. It was based on the two-phase steady-state flow organized in such a 
way, that the convective flow has been equilibrated be the counter-current capillary imbibition. 
This method has defects. Firstly, it disables the determination of the water permeability hnction. 
Secondly, it requires a big volume of experiments. Some modi£ications have been examined by 
Virnovski and al. (1995), but they require the measurement of phase pressure in the sample. 

In the present paper we build the complete classification of steady-state methods, where 
we distinguish the group of integral methods and the group of distributed methods. We show the 
analogy between these two groups (duality principle), and we develop several versions of 
methods, which use only the data easily measured. 

We study the linear porous core sample having a cylindrical form with a radius R and a 
length L. The sample is initiaIly water saturated. The experiment consists in injections of the 
water-oil mixture, when the flow rates of each fluid are done. The outlet face of the sample is 
constantly washed by water; therefore the outlet saturation is always equal to the oil percolation 

threshold s*. The porosity and the permeability, as well as the initial saturation are assumed to be 
known. 

The aim of works consists in the determination of the capillary pressure curve and relative 
permeabilities. 
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2. THEORETICAL BASIS OF THE STEADY-STATE FLOW 

The two-phase incompressible flow through the medium with a cross-section A and a 
length L may be described by the following problem for the water saturation s (C. Marle, 198 1): 

0  
s(x,o)=s (x ) ,  

and for the water pressure p:  

where x = XIL, T = tlt,, cp(s)= -k0,,FpA5, p, = P S I q ,  w (z)= Q(z)lQO; X, t are the space 
coordinate and the time, t ,  = m p O i r ~ * / ~ p , O ,  Q = Qo, + Qw is the total flow rate, K is the 

permeability, m is the porosity; F(s )=kW/(kw +poi[); P,(s)= P i , -  P, is the capillary 

pressure function; ii = pw/pO,; V,, V,, are flow velocities; k,, k,, are relative permeabilities; 
p = PIP:, p'(r)= P'QIPP, P'(t) is the outlet face pressure; E , e o p , ~ / ~ X p , O  . The indexes 
I1w" and "oil" correspond to the water and oil. The values of P:, Q' correspond to the 
characteristic capillary pressure and the total flow rate. The values s,, s* correspond to the 
percolation threshold for both liquids. 

The last condition in (2.1) shows that the inlet fractional flow is known and equal to h(z), 

because we have for the fractional flow: I 3s 
Qw =F(s)--q(s)---. 

Qw + Qoii EW ax 
We are going to use the stabilised solutions, which correspond to the steady-state flow 

reaching at large time magnitudes. Let us assume the functions h(z), w(z) have finite limits: 
h(s) + h = const, w (T) 1 when T + a. Then the problem (2.1) is reduced to the 
following steady-state formulation: 

It is clear that this problem has a unique solution, which is not trivial. This fact leads to 
the existence of the non-uniform saturation distribution in the steady-state case. This distribution 
is supported by the counter-flow consisting of the convection flow directed from the inlet to the 
outlet, and the capillary imbibition directed in the inverse side. 

The last problem has an integral: 

The solution of (2.3-a) may be expressed through an explicit form: 
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1 " k,,, (S)F(S)  pr, (y) 
x = l + -  65 

E 5 F(s t ) -  h E,. F(S)-1 
(2.4) 

~ P C  where pA,(s)= -. 
ds 

3. INTEGRAL METHODS: GENERAL CLASSIFICATION 

3.1. Measured parameters 
The integral methods use only the averaged information on the flow process, and the data 

on the boundaries of the porous medium. These methods apply a simple measurement techniques. 
Instead of this it requires a big amount of experiments, each of them is much longer in the time. 

Really it is possible to  measure the following averaged or boundary parameters (all values 
are dimensionless): the total flow rate, E; the fractional flow at the inlet on the medium, A; the 
averaged water saturation in the medium, S; the pressure at the outlet, which is the same in both 

phases, p*. Anytime it is possible to measure: 
- the capillary pressure at the inlet Po; if only the oil is injected in the medium, the 

measured inlet pressure is equal to pG-p*, because of the water pressure is constant along the 
sample (this will be shown later); 

- the water saturation at the inlet a, if one can measure the saturation within the medium. 
In this case we have also the full curve of the saturation distribution along the core; 

- the total pressure drop in the water Ap; if we can measure the pressure in each phase. 
The mean difficulties are caused by the needs of the phase pressure measurement. Now it 

is recognized that the half-permeable membrane techniques leads to big errors in phase pressure 
definition. 

3.2. Theory of integral methods 
The integral methods use only the relations, averaged over the sample length: 

The equation (3.1-a) results from (2.4), if one takes x = l .  The equation (3.2-b) may be 
deduced by integrating the relation (2.3-b), and by change the integration variable XJS -+ pc 
using the relation (2.3-a): 

& = -  k oi, ('IF(') P Ss (s) & = -  'oil (PC ) F ( P ~  1 
&(F(s) - A) E(F(P, - h) dpc 

1 
The equation (3.1-c) results from the definition of an averaged value S = [s(x)& and the 

0 

change of variables (3.2) after this. 
Anytime one also uses another form of these equations, which may be obtained by the 

inverse change of variables p, + s: 
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The system of equations (3. l), or (3.3), describes the sequence of steady-state regimes, 
which has been established in the series of experiments, and which differ by the parameters {E, A, 
PC,  3, Ap) in the first case, or {E, h, 3 ,  o,  Ap} in the second case. 

Three equations (3. I), or (3.3) contain five parameters. Consequently, only two of them 
are independent. Let us chose the parameters E and h as independent. Thus, the parameters S, 
$, Ap, o are the fbnctions of s,  h: 

PG =Po(&, A), S = ~ ( E ,  A), & = W E ,  h) (3.4) 
or 

o=o(s, h) instead of Po 
The different methods of the experiment interpretation may be proposed by reducing the 

number of parameters which can be varied. 

4.1. The general form of the &-method 
Let assume that the fractional flow h is constant for all the series of experiments. We only 

change the total flow rate E .  Then we have from (3.4), that: Po=Po(~) ,  S=S(E), &=&(E), 0= 

=o(E). We can make a differentiation in (3.1), that leads to the following relations: 
F ( P & ) - A  h ~ ( S E )  

F ( p G )  kw lTzG(pG - I? (4.1-a,b,c) 

pc &=o =o 4pl .=o =o SI .=, =s* 

or from (3.3): 

The relations (4.1-b) for Ap are deduced by differentiation of (3.1-b), which defines the 
fbnction &(Po(&)). 

The equation (4.2-c) shows, that two functions S (E )  and O(E) are expressed one through 
another; therefore it is sufficient to measure one of these functions. Another function does not 
give a new information. 

Thus, to determine three functions k,(s), kOit(s), pc(s) it is necessary to measure 

three functions: PG=Pc(~ ) ,  ~ = S ( E ) ,  and Ap=Ap(&). Then, we obtain the following sequence of 
results: 

AP(E)-+ k w  (E), from (3 .54)  

' L ( ~ ) + k o j / ( ~ ) >  from ('.'-a); * k w ( ~ ) 7 k o i / ( ~ ) , ' c ( ~ )  (4.3) 

(S(E)+O(E), from (3.5-4 

We have taken into account of the following dependence for the hnction in right-hand 
side of  ( 4  1 -a )  ( F  - h ) / ( k i ,  ~ ) = ( k ,  - h ( k ,  +k,,P))/(k,. k, , , )  . 
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Actually the &-Method can be executed, if and only if the inlet face capillary pressure ffG 

and water pressure drop really may be measured. Two versions follow from these requirements: 
E~ -method, and multiple &-method. 

4.2. EO-method 
This version corresponds to the case when h=O. It has been developed by Ramakrishnan 

and Capiello (1991). The curves in the figure 1 shows, that this case covers the biggest interval of 
saturation changes; thus it allows to reconstruct the whole of founded curves. The governing 
equations may be simplified to the following: 

One sees, that the water pressure is a constant, that may be measured at the outlet (p*). 
Because we have only the one-phase flow, the pressure at the inlet is equal to the oil pressure. 
Then, by measuring the inlet pressure we obtain the capillary pressure as a difference between the 

inlet pressure and p*. 
The sequence (4.2) becomes more simple: 

Thus, the oil permeability is easily reconstructed, however, the water permeability can not 
be determined here. 

4.3. Multiple &-method 
The second version allows to determine the water phase permeability too. It requires to 

make two sequential series of experiments. The first series corresponds to the E~-method 

described above. After this, one executes a new series corresponding to the &-method, but when 

k O .  It is necessary to measure the functions P' (E)  and S'(E) in the first series, and S"(E) 
in the second one. 

We have the following algorithm of data interpretation: 

P' (E) -+ k,,, (E), from (3.8-a) 

S' (E)-+oZ (E), from (3.8-c)' 

{s" (E)+G" ( E )  from (3.5-4; + k ,  ( c )  h r n  (3.5-a); =, k ,  (on ) 

5. OTHER FORMS OF INTEGRAL METHODS 

Theoretically it is possible to propose two other groups of methods. We differ h-method 
and E-h-method as in the case described above. The first corresponds to the case, when only 
parameter h is varied and E is fixed. The second can be realized when both parameters E and h are 
varying simultaneously. 
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In this case we have to use the integral equations directly, or their finite-difference 
approximation. For example, it is easy to deduce the following expression in form of recurrent 
relations in the case of h-method: 

where n is the number of the experiment. The first number corresponds to the experiment at the 
value of h near to 1. This equation is an approximate equivalent to relation (3.5-a). Analogous 
approximations may be deduced for other equations (3.5-b,c). We omit these deductions. 

The practical importance of these methods is very low. They may be only applied after the 
development of precise methods for phase pressure measurement. 

6 .  DISTRIBUTED METHODS 

Let us suppose that only one experiment has been made in the sample, and the saturation 
distribution s(x) has been measured along the sample length. 

6.1. Duality principle 
The governing equations are (2.3), or after some obvious transformations: 

or instead of (6.1 -a): 

It is easy to see, that equations (6.1) coincide to (4.1), if one formally changes the 

variables: x+l-E, po -+PC, p-p* +Ap, s+a. The duality principle follows from this: 

I)  B e  saturation distribution s(1-x) within the medium at E= I 
coincides to the function o(E), resulting from the integral 
&-method, at the same values of the inletfractionalJow h. (6.3 ) 
2) B e  same analogy takes place for the pairs offinctions: 

po(l - x )  and P o ( ~ )  ; ( p  - p*)(l - x )  and &(&). 
The comparison of pictures on Fig. 1 proves this principle. 
Thus we can transfer general ideas of the techmques developed for integral methods to 

the distributed ones. 

6.2. Particularity of the saturation distribution at the end of the sample 
The figure 1 shows the singularly behavior of the hnction s(x) at the end of the medium. 

The such a behavior is caused by property of the hnction kOji(s) ,  which tends to zero when 
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Fig. 1. Dependence O(E) of the d e t  saturation on the flow rate (on the left), 
and the saturation distribution s(x) along the sample (to the right) 

s -+ S *  Accordingly the percolation theory this function shows the following behavior near the 
point x- 1 

kOil(s) - b(s* - s ) ~ ,  s + s* (p >O) (6.4) 

where h, a are the constant values. 
It easy to obtain by means of the series expansion method the following expansion for the 

solution of (6.2), which describes the saturation distribution near the end of the medium: 

Thus, the point x = l  is a branching point. 
This relation (6.5) will be used in the one of method versions. 

6.3. Direct distributed method 
All the distributed methods have a considerable limitation, which may be fomuIated by 

the following theorem.. The initial non-stationary equation (1.1) shows that the saturation 
distribution only depends on two undefined hnctions, fls)  and w(s)= k , i l ( ~ ) p ~ s ( ~ ) .  Thus, 
knowing only the saturation distribution in space and time it is impossible to determine hnctions 
k , , , ( ~ )  and p,(s) separately, as well as the function k , ( ~ ) .  The direct method allows the 
determination oniy of the functions 4 s )  and W(S)  

Let us assume the two experiments have been executed at different values of the 
parameter pair (A, E), and two corresponding saturation distributions have been obtained: sl(x) 
for ( h l , ~ l ) ,  and s2(x) for ( ? L ~ , E ~ ) .  Naturally, #O and E 2  f 0. 

Let us assume that h n ~ t i o n s  si(x) are monotonous, then the inverse functions exist: 

x ~ ( s )  and x~(s ) .  We obtain from (6.2) the following solution with respect to  the finctions F(s) 

and ~ ( s ) ,  which is nontrivial, if h I,  h2 #O simultaneously: 

One of hi may be equal to zero; both E~ may be identical. The corresponding 
simplifications are obvious. 



1996 SCA Conference Paper Number 963 1 

6.4. Combined distributed-integral method 
In order to determine the phase permeability functions the following sequence of 

experiments may be executed. The part I consists of one series of experiments at h=O and 
different values of E, corresponding to the integral so-method. Part I1 consists in the one 

experiment at h*O and any 6 (the value of s about of 1 is more convenient), corresponding to the 
distributed method. After first part we obtain the hnction of capillary pressure p , ( ~ )  and relative 

oil permeability k,,,(s). The second part gives the distribution s(x) or the inverse function x(s). 

Then we determine the hnction F(s) from (6.2), and after this the water relative permeability: 

h~(dx/ds)  
F ( s )  = k,,(s)P(s) 

kw(s)= ' 
koil (4 P:, (4  + E ' 

where E and h are values of the parameters corresponding to the part II of the method. 

6.5. Distributed half-parametric method 
This version partially uses the theoretical laws of some hnctions' behavior. 
The method is based on the following idea. The relation (6.5) shows that the end of the 

distribution s(x) is very sensitive to the function kOjl(s), because the parameter p of this hnction, 
introduced accordingly to (6.4), determines the singularly behavior of saturation distribution near 
the point x = l .  Therefore, by treatment of the saturation distribution end we can seek the 

parameter e, hence the behavior of the oil permeability near s*. 
Moreover, if we assume that the hnction kOil(s) has a following form: 

which coincides with the relation (6.4), when b=b -(s* - s , ) - ~ ,  then defining the parameter P 
we obtain a satisfactory approximation for the whole curve in interval (s., s*). 

The techniques of the method is as follows. Let us assume that we know the saturation 
distribution s(x). We have from (6.5), where two parameters P and a are unknown: 

That is a linear equation with respect to parameters l/(l+p) and h a ,  which can be 
solved by regression methods. For example, the mean square method leads to the following 
results: 

where the summing is made from 1 to N, by N experimental points. 
Thus, the function kOil(s) is determined. 
Knowing functions kOi,(s) and ~ ( s )  we obtain the capillary pressure hnction as 
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The relation for f(s) at FS* results from the definition (6.5) of the parameter a .  
In practice, the integration will be replaced by the summing over discrete system of points, 

that leads to recurrent equations: 
(0, i= l  

The sequence of actions is as follows: 
i) one makes one experience at h=O and at free values of E, one measures the fbnction s(x) 

and one builds the inverse function x(s); 
ii) one determines the function ~ ( s )  from (6.6), which is reduced to  \v(s)= -&(dx/ds); 
iii) one builds the graphics Y(X) and one fixes its linear part corresponding to  (6.9); 
iv) one computes the parameters (6.10) by regression method, applied to the linear part of 

the hnction Y(X); 
v) one reconstructs the oil permeability (6.8); 
vi) one determines the finction f(x) from (6.1 I); 
vii) one computes the capillary pressure (6.12). 
To obtain the water permeability, it is necessary to make the second experiment at As0 

and free value of E, and apply relations (6.6), (6.7) after this. 

6.6. Examples 
We have computed the direct steady-state problem (6.2), which gives to us the saturation 

distribution s(x,. This distribution with introduced small oscillations has been associated to the 
"experimental data". The oil relative permeability function has been taken in the form (6.8), when 

P=3, s, =0.2, ~ * = 0 . 8 .  After this, the half-parametric distributed method has been applied. 
The Fig. 2 shows the dependence Y(Xj, where the initial linear interval corresponds to the 

Fig. 2. Interpretation of the saturation 
distribution end accordingly 
the relation (6. I I )  

1.20 

- result of the method 

x 0.80 
- exact fundion 

'z 
2 
'4- 
a 
0.40 

0.00 
0 

S 

Fig. 3. Capillary pressure function; 
results of the distributed method (solid line) 
and the exact curve (dashed) 
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relation (6.9). This part of the curve has been processed to determine the parameters (6.10) 
The final result for capillary pressure function determination is shown in the Fig.3. 

7. RELATIVE PERMEABILITIES DEPENDING ON FLOW VELOCITY 

The two-phase flow when relative permeabilities depend on flow velocity is a special case 
appropriated to the gas-condensate mixture in particular. Then the problem consists in 
determination of two hnctions kw (s, q), kOil (s, q), K(s, q)  , where q is the dimensionless 

total flow rate. 
It is easy to show that the half-parametric method allows to determine all the mentioned 

functions, if it is repeated step by step for different magnitudes of the flow rate. 
The algorithm of method is invariant for each step. 

CONCLUSIONS 

One of the mean results of this paper is to  recommend the combined methods for the 
determination of all the three function of capillary pressure and relative perrneabilities. The E, - 
method (that is named also as a "semi-dynamic" method) should be combined with other integral 
method, when both fluid phases should be injected in the sample. The distributed method must be 
supplemented with an integral E, -method, or with the theoretical correlations. As example we 

show the possibilities of three new combined methods: integral multiple &-method, distributed- 
integraI method and half-parametric distributed method. All the versions require to make the 
usual measurements, such as the inlet-outlet pressure and/or the saturation distribution along the 
sample. 
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