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Abstract
Fracture and vug porosity and permeability measurement still remain an open problem for
core analysis labs. These data are of primary importance, mainly in carbonate reservoirs, for
a correct simulation of the field performance in terms of stored hydrocarbon volume, fluid
dynamics and matrix/fracture exchange. Conventional image analysis on core by scanning
electron microscope (SEM) on thin sections does not retain the complete 3D information.
Use of non-destructive imaging techniques such as CT X-ray and Magnetic Resonance
Imaging (MRI) seems to be the more interesting approach to the problem. In this paper we
present a proprietary software tool which allows the interactive processing and
interpretation of 2D and 3D MRI of core.

Currently MRI data are used in laboratory analysis, mainly for semi-quantitative description
of core samples. We will highlight that MRI core data can be better and more cost
effectively exploited if numerical processing and analysis are applied to gather quantitative
information about petrophysical properties, namely porosity and permeability.

We will present how numerical core analysis can be performed on 2D MRI data, by means
of a software tool which is based on computerized image analysis and processing
techniques. In particular, this tool can significantly contribute to the quantitative analysis of
MRI data for calculating constituent porosity in a dual porosity matrix. Moreover,
innovative modeling techniques are incorporated in the tool, in order to automatically
segment core images, to separate different porosity contributions (vugs, fractures,
microporosity or other).

We will then show how these techniques can be directly applied to 3D MRI core data and
discuss a case study.

Introduction
Fracture and vug porosity and permeability are of great importance because of their
relevance on stored hydrocarbon volume, fluid dynamics and matrix-fracture exchanges -
especially in carbonate reservoirs. In these reservoirs porosity can be divided into two main
types: primary (depositional) and secondary (diagenetic-tectonic) (Ref. 1).

Many papers are dedicated to the problem of discriminating between matrix and fracture
porosity and, more generally, to the recognition of different pore types and their relative
contributions to the total porosity (Ref. 2). At present, conventional core analysis porosity
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measurements are able to quantify the total value of the parameter but fail when they try to
discriminate the single contribution of a pore class. Nevertheless, we can define a pore type
as a class of porosity characterized by a unique geometry (size, shape, distribution and
frequency). The understanding of the nature and distribution of pore types is important
especially with decreasing porosity values. In such rocks, in fact, reservoir behavior is less
dependent on total porosity than on the pore type distribution (Ref. 2). Classical methods
used to investigate the different porosity components are based on image analysis. The
quantification is carried out on 2-dimensional images using thin sections and SEM, but there
are problems related with the destructive nature of these sampling methods and the
extension of two-dimensional data to three dimensions (Ref. 3).

Non destructive imaging techniques such as CT X-ray and MRI are routinely used to obtain
images of the rock samples along any arbitrary plane and can be used to derive quantitative
information on the fluid content. At the same time, structures such as vugs, fractures and
different pore types can be qualitatively recognized by the human eye from these images.
While the CT technique is mainly based on the analysis of porosity histograms to distinguish
the contribution of the pore volume from the fractures (Ref. 4), in this paper we will present
an approach based on automatic image analysis, processing and segmentation, showing that
more sophisticated methods can be used to separate different pore classes. In particular, in
our method, the images we started with were obtained by Nuclear Magnetic Resonance
(NMR) imaging which gives the spatial fluid saturation inside the rock. Generally these
measurements are influenced not only by the porosity structures, but also by parameters
such as pore volume, surface-to-volume ratio (S/V), fluid content and composition which
yield a final complex product. Therefore, if on the one hand NMR images are easily
obtained, at least for limestone samples, on the other it is always necessary to process the
images before any computation for deriving quantitative and complete classification of the
pore structures can be carried out. Since the image processing techniques best suited to this
problem are, in general, difficult to choose, and their fine tuning is beyond the scope of a
petrographer, we chose to build a software tool to assist him/her while analyzing,
discriminating, classifying and calculating porosity on core samples images. The software
we developed can automatically discriminate different pore classes, grouping them into
porosity types and characterizing each item by volume, sharpness, heterogeneity. The
petrographer can then group one or more of the classes, using his/her experience, and then
calculate the respective porosity values inside each slice.

Imaging Techniques
NMR is radiofrequency spectroscopy based on the excitation of nuclear energy levels,
mainly in hydrogen nuclei, split by means of an external static field B0 (2.4 T, in the
spectrometer we used). The return to equilibrium, after turning off the RF, generates a
signal proportional to the fluid content and whose decay is characterized by two different
times: the spin-lattice relaxation time, T1, and the spin-spin relaxation time, T2 (Ref. 5).
The basic NMR physical phenomena, just described, can be applied in different ways for
extracting a wide spectrum of information on the fluids that saturate a rock sample. For
example, MRI is a tomographic technique which uses a magnetic field gradient to encode
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signal coming from different sample parts, guaranteeing spatially resolved images. A series
of gradients correctly oriented in 3D space generates a spatially dependent distribution of
MRI frequencies that can be computer processed to obtain an image of the rock fluids
distribution that is also a function of the pore system. In addition, the solid matrix does not
interfere with measurements of fluids, whose properties, such as relaxation times, diffusion
coefficient and chemical composition can be measured. As previously mentioned, the MRI
signal is proportional to the number of nuclei present in the analyzed region, and it is upon
this effect that the method for computing  porosity using MRI is based. In particular, a mass
reference was used to convert the experimental MRI signal amplitudes into porosity. This
reference has the same proton density as the fluid in the rock, so the conversion was
performed considering the porosity in the reference as 100%. Specifically, the following
formula was applied for each pixel in the core image, where M is the magnetization and V
the pixel volume:

core ref
refV coreM

coreV refM
............... (1)

The MRI porosity measurement can be considered as a direct measurement. Because the
acquired magnetization is reduced by the relaxation process, in order to calculate the total
porosity, an accurate fitting of the MRI experimental data is necessary to obtain the initial
magnetization value M0 and T1,2.

Another important feature of MRI to point out is that the images are characterized by a
signal which is not only proportional to the fluid content, but also to the relaxation time (T2

in our experiment) which is an indicator of the confining geometry. In our experiments we
measured the hydrogen density map using MRI sequence based on the CPMG (Ref. 5), on
transverse sections. In this way the structures could be characterized both for their “shape”
and for their T2 behavior. In particular large pores will exhibit higher T2 values with respect
to small ones: for this reason MRI can discriminate directly pore dimensions.

All these mentioned features make MRI techniques useful for examining core samples. In
particular it is a non destructive technique and multiple experiments, such as fluid flow
through samples, may be conducted with the same, single rock sample.

Manual vs. Automatic Image Analysis
We will now describe the image processing methods we used to analyze the NMR core
images, and to obtain the constituent porosity. We define as constituent porosity all
contributions associated to specific features such as fractures or vugs (Ref. 6). More details
on the processing techniques we used can be found in references 9 to 13, since they are
beyond the scope of the present paper.

Figures 1 and 2 present the intensity maps (in false colors) relative to two core samples
slices. The relevant features of vugs and fractures can either be detected by visual inspection
and selection of zones on the images, or by thresholding them. Both methods suffer from
lack of objectivity and repeatability. For instance, the human eye can immediately detect
isolated vugs, fractures and other porosity classes, but the classification is not unique, since
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another expert could (almost certainly) point out different relevant features. It is also well
known that the human eye can easily detect lines, even when they do not exist (Ref. 7). The
effects of choosing a different value for thresholding are shown in figures 3. By thresholding
one selects only the image zones where the signal intensity is above the selected threshold,
so that the resulting image can be used as a mask for computing porosity. Using the masks
in figures 3b and 3c, where the thresholds are respectively 16 % and 21% of the maximum
intensity, the values for partial porosity are respectively 4.22% and 2.74%. Note that the
two thresholds differ by 5% while the resulting porosity difference is about 50%. Other
problems are due to low image resolution and noise, which can significantly alter the visual
interpretation.

Is it possible to establish an objective and repeatable criterion to classify different porosity
types? The solution we propose is built upon an automatic method of classification of the
image zones on NMR images which guarantees the requested objectivity and repeatability.
The human expertise is the key factor in the following selection phase, which is in turn
based on the results of the previous, automatic steps. The correct mix of the automatic and
expert results can thus be achieved.

NMR Image Processing
Our method is based on the assumption that there exists an underlying statistical model that
describes the spatial and physical interaction between adjacent pixels. This implies that
neighboring pixels can be grouped into a single class if they belong to the same statistical
population. So a simplified image, or mask, can be computed from the intensity image, by
assigning each pixel to a class. The user chooses the number of classes after a visual
inspection of the sample slices: our experiments show that a reasonable value usually is
near, or in the order of the different constituents number. This descends from the final goal,
namely to detect porosity mainly coming from vugs and fractures, discarding other
contributions. The algorithms can also model the inter-regional spatial relations, thus better
describing the complex interactions that can occur inside the sample. The user chooses the
parameters of the statistical model in order to get a faithful representation of the image, in
terms of correlation between adjacent pixels. Once the mask image is generated by the
classification algorithms, the user can compute the porosity due to a constituent by selecting
that single class on the mask. We tried several classification algorithms, and found the best
results using a combination of statistical and probabilistic approaches. Figure 4a shows an
original intensity image, and the corresponding classification results are shown in figure 4b:
note that the image has been significantly simplified, while retaining all the relevant features.
Figure 4c shows the mask obtained by selecting class 4, which is represented by the green
color. This mask can be used to compute the porosity due to the selected constituents.

Pixels belonging to the same class can further be classified as belonging to the same shape,
if they are connected. So, the user can also build a mask formed by single shapes and/or
single classes. Figures 5a and 5b show respectively the intensity map and the mask obtained
by selecting the class of the fracture and shapes whose area is above a defined threshold,
which presumably correspond to an isolated vug and large zones of significant porosity.
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Experiments
A series of MRI measurements on 9 water saturated core plugs (2’’ diameter and 3’’
length) were performed. The rock samples were representative of a fractured dolomite
reservoir where the diagenetic evolution created both small intercrystalline pores and large
dissolution vugs. The samples were twice Soxlhet extracted, first using toluene and then
using methyl alcohol. Conventional porosity measurements were determined by the water
saturation method. In this study a multi-slice multi-echo (MSME) sequence, based on the
CPMG method, was used (Ref. 5). A series of echoes is generated by the repeated
application of selective 180° pulses. A key factor in this kind of experiment is the constant
echo time (TE), which must be kept as low as possible. An optimal value for TE is the
result of a compromise between the size of the acquisition matrix and the resolution of the
image. In our acquisitions the value of TE was 4.8 ms and no diffusion effects were
noticeable. The multi-echo acquisition was then fitted pixel-by-pixel according to the
following equation:

M t M e t T( ) /
0

2 .......................................................(2)

and the intrinsic magnetization M0 and the T2 time determined. The porosity was then
calculated by comparison with the reference sample using formula (1). This simple mono-
exponential behavior was assumed because of the relatively long typical relaxation time of
this lithology , although more complex fittings could be used in other situations (Ref. 8).
For each sample, eight transversal slices were acquired with 5 mm slice thickness and 5 mm
interslice distance. The acquisition scheme is shown in figure  6.

Total porosity was determined from image analysis and compared with that measured by
conventional laboratory methods. For two samples the contribution from vugs and fractures
was compared to the SEM technique. The NMR total porosity was computed using
equation 1, that is taking into account all pixels that show non-null intensity. The NMR
secondary porosity was calculated first by classifying each zone on the NMR fitted images,
as explained in the previous paragraphs, then by selecting all the zones that, according to
the petrographer’s interpretation, correspond either to fractures or to vugs. The software
we developed lets the user select such zones interactively and directly on each image. So the
petrographer can either select one or more classes and use them as masks for the
computation of the corresponding porosity, or go further with image processing using
geometrical and shape characteristics of each region. Using logical operators the
petrographer can extract from one or more classes the shapes that best suit his/her visual
interpretation of the core images. The combination of logical operators is achieved in a
visual programming environment, with “drag and drop” of the corresponding icons and their
mouse linking, as appropriate.

Discussion
The following table shows the measured total porosity values, compared with those
calculated on the MSME images and on SEM images for two cores. The two last columns
show the computed constituent porosity, both on MRI images and on SEM images.
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SAMPLE
PERMEABILITY

(mD)

LAB
POROSITY

NMR
TOTAL

POROSITY

SEM
TOTAL

POROSITY

NMR
CONSTITUENT

POROSITY

SEM
CONSTITUENT

POROSITY

HORIZ. VERT. % % % % %

49 159 1.05 3.6 4.58 1.56
67 3.54 0.06 5.2 7.11 1.58
310 15.04 5.03 4.1 3.07 1.30
313 0.65 1452 3.9 3.81 0.65
319 503 4.05 8.7 8.67 6.34 2.4 1.32 (*)
337 1400 279 3.6 3.29 0.84
499 10.3 12.2 3.5 2.60 0.39
460 30.1 16.6 6.7 5.05 3.25
463 39.6 10.2 6 4.53 4.93 1.58 2.09 (*)

TABLE 1. Petrophysical measured and computed parameters. (*) SEM secondary porosity
takes into account fractures and vugs with  > 1 mm.

In order to explain total porosity differences in Table 1 we have to point out some
peculiarities of each method.

First of all, the examined samples are very heterogeneous, as highlighted by comparing the
difference between vertical and horizontal permeabilities (cols. 2 and 3). The MSME
technique imaged only half of the core sample, thus explaining some of the difference.

Secondly, conventional porosity measurements assume that the considered volume is
composed of a perfect cylinder. Surface structures, being water saturated, contribute to the
total porosity. MRI measurements, on the other hand, are performed after removing the
water surface, to reduce image artifacts. The SEM results on the two selected samples were
obtained excluding the outer part of the sample, leading to comparable values.

Another point to be stressed is that MRI techniques have to be applied in a carefully
controlled environment, because small differences in experimental conditions give rise to
different results. So the correct sample excitation, field homogeneity, and sample
heterogeneity are factors that could explain the experimental differences.

On the image processing side of the proposed method, we must point out that background
noise can significantly alter the overall results. We found that it can significantly vary and
can sum up to 9% of the useful signal under particular sampling conditions. As already said,
the segmenting and classifying algorithms take into account the background noise, but it
nevertheless can significantly disturb the final result.

After pointing out the well known problems, we want to stress some advantages of the
proposed method.

By comparison with the results obtained by SEM, the calculated total and constituent
porosity values are in good agreement. SEM results shown in table 1 take into account
fractures and pores with diameter > 1 mm, which is the resolution of the images used for
calculations. Table 2 shows the comparison between overall SEM results and the values
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computed on the NMR images when taking into account features with comparable
resolution (  1 mm).

SAMPLE 319

SEM features Porosity
value

MRI
Chosen parameters

Porosity
value

fractures 0.63 % 1 class selection 0.56 %
pores  > 1000 0.69 % 1 class selection + shapes selected

by area and sides ratio values
1.80 %

pores 50 < <1000 4.23 %

pores  < 50 0.79 %

TABLE 2. Comparison between SEM and NMR results.

An advantage of the proposed method lies in its objectivity and repeatability, as already
stressed. The method is also computer intensive, but obviously much less costly than the
petrographer’s time necessary to visually threshold the images in order to select the proper
zones on the image.

Using MRI we can obtain maps of relevant parameters, such as relaxation time T2, which
are strong pointers of the confining geometry and that can be used for discriminating
different constituents. Figure 7b shows the T2 map relative to the intensity map in figure 7a,
and clearly shows longest T2 times for the fracture.

Finally, the method can immediately be extended to 3D NMR data. Our preliminary
experiments show quite good results, especially on fractured samples, since MRI can
reconstruct very carefully the fracture pattern. In one case, the calculated results are in very
good accordance with fracture measures taken on core high resolution photographs.

Conclusions
In this paper we have shown that it is possible to calculate the core constituent porosities
using MRI. The main advantage is that the technique is fast and non destructive, and takes
advantage of the software environment we built. In addition to the porosity information,
which can also be obtained by other non destructive methods such as X-ray tomography,
MRI  relaxation time T2 gives information about the confining geometries and their
dimension, which cannot otherwise be derived. This information can be directly used or
further processed, to obtain the desired porosity classes.

The proposed image processing techniques can significantly help in reducing the overall
calculation times and enhance objectiveness and repeatability.

We found good agreement between MRI and SEM for pore structures with dimension of 1
mm.



SCA-9706

8

Acknowledgments
We wish to thank AGIP management for permission to publish this paper and numerous
AGIP personnel for assistance with this work.

References
1. Tucker M.E., Sedimentary petrology, Blackwell Scientific Publications, UK, 1991, p 154

2. Davies D.K., “Image Analysis of reservoir pore systems: state of the art in solving problems
related to reservoir quality”, SPE 19407, 1990

3. Coles M.E., Spanne P., Muegge E.L., Jones K.W., “Computed microtomography of
reservoir core samples”, SCA-9401, 1994

4. Pepin G.P., “Quantitative CT core analysis for reservoir characterization”, International
Symposium of the Society of Core Analysts, CT Workshop, 1994

5. Callaghan P.T., Principles of nuclear magnetic resonance spectroscopy, Oxford Science
Publications, UK, 1991

6. Moss R.P.M., Pepin G.P., Davis L.A., “Direct measurement of the constituent porosity in a
dual porosity matrix”, Log Analysist, March-April 1992, pp. 126-135

7. Baker V.R., The channels of Mars, University of Texas Press, Austin, 1982

8. Brancolini A., Cominelli A., Kulkarni R., Watson A.T, “Spatial distribution of petrophysical
parameters on a core scale using Magnetic Resonance Imaging”, to be presented at the 38th
Annual Symposium, Society of Professional Well Log Analysts, June 1997, Houston, Texas

9. Zamperoni P., Metodi dell’elaborazione digitale di immagini, Masson, Milano, Italy, 1990,
pp. 15-36, 71-88, 134-144

10. Gonzalez R.C., Woods R.E., Digital Image Processing, Addison-Wesley Publishing
Company, Reading, Mass., 1992, pp. 413-465

11. Jain A.K., Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs,
NJ, 1989, pp. 233-244, 362-394

12. Chou P.B. Brown C.M., “The theory and practice of Bayesian image labelling”,
International Journal of Computer Vision, 1990, (4), pp. 185-210

13. Geman S. Geman D., “Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
1984, (6) 6, pp. 721-741



SCA-9706

9

Figures

Figure 1. Intensity map in false colors
(slice 1)

Figure 2. Intensity map in false colors
(slice 2)

Figure 3a Figure 3b Figure 3c
Figure 3. Slice 3: intensity map in false colors (fig. 3a), and the effects of different threshold
levels: threshold=0.16*M0 max gives  =  4.22 (figure 3b), threshold=0.21*M0 max  gives

 = 2.74 (fig. 3c)

Figure 4a . Slice 4: Intensity
map in false colors

Figure 4b: Slice 4: the classi-
fication results

Figure 4c: Slice 4: selection
of a single class
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Figure 5a. Slice 5: the intensity map in
false colors

Figure 5b. Slice 5: the mask for
computing the  constituent porosity

Figure 6. The acquisition frame

Figure 7a. Slice 6: the intensity map in
false colors

Figure 7b. Slice 6: the T2 map




