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bRF - Rogaland Research, Thormøhlensgt. 55, N-5008 Bergen, Norway
cDept. of Chem. Eng., Texas A&M Univ., College St., TX 77843, USA

Abstract

Criteria are presented for validating estimates of relative permeability and capillary pres-
sure functions from laboratory data. Examples are provided to show that methods used to
calculate relative permeability from displacement data may provide inaccurate estimates
when these criteria are not met.

Introduction

The relative permeability is a macroscopic property that is defined through extensions of
Darcy’s law to multiphase flow. These equations can be developed on the basis of local
volume averaging1. For two-phase flow, the relative permeabilities are taken to be smooth,
nonnegative, and nondecreasing functions of the corresponding fluid saturations.

The relative permeability functions can be estimated on the basis of data gathered during
displacement experiments. Since the functions are defined within equations, the functions
must be estimated from some inverse methodology based on measurements of various quan-
tities which appear within the Darcy and material balance equations that may be used to
describe the flow process.

There are a number of different approaches which have been reported for determining esti-
mates of these properties. The quality of the various estimates can vary widely. Selection
of the estimation procedures should be made on a sound understanding of the problem at
hand. Here, we provide a basic philosophy for estimating relative permeability and capillary
pressure functions (collectively called multiphase flow functions), and propose procedures for
evaluating candidate estimates. Examples given illustrate the use of the procedures, and also
illustrate some problems, which could be encountered in the estimation of the flow functions.
The first example illustrates that if the proposed solution criteria are not met by candidate
estimates, different solution methods may produce estimates that differ significantly. The
second example shows that badly constructed experiments may lead to inverse problems that
have inaccurate solutions even if the solution criteria are met.

The Inverse Problem

The inverse problem is to obtain estimates of the relative permeability (and possibly the
capillary pressure) functions on the basis of data measured during displacement experiments.
Since the relative permeability is a function of saturation, we require estimates of the entire



function. Consequently, for our discussion, any method that calculates only relative perme-
ability values, such as the Johnson, Bossler, Naumann (JBN) method2, should be augmented
with an interpolation or smoothing scheme to specify the entire functions (see, e.g.,17).

The role of the mathematical model of the displacement experiment in the inverse problem
must be understood. All methods for estimating relative permeability are calculational pro-
cedures based on a mathematical model of the displacement experiment. Usually, the model
is based on some simplified representations of the Darcy and continuity equations for each
fluid phase. For example, the JBN method is based on the representation of the sample as
being homogeneous, incompressible fluids, no capillary pressure effects, uniform initial (and
irreducible) saturation, and constant injection rate for the displacing fluid.

One may say that the inverse problem is inherently ill-conditioned, in that we desire the
estimates of (infinite-dimensional) functions on the basis of some finite number of measure-
ments. There is no available theory that guarantees the existence of a single, best solution
in such a case. Nevertheless, since we expect the functions to be relatively smooth, we can
determine accurate estimates of the functions provided there is sufficient information content
in the measured data4.

All estimation procedures deal with finite dimensional representations of the unknown func-
tions. Many methods provide for unique estimates within those finite-dimensional represen-
tations. However, injudicious use may result in inaccurate estimates of the functions.

Regardless of the methodology used to generate solutions, the results should be validated.
In particular, the following two requirements should be met if a candidate solution is to be
retained as estimates of the properties:

1. The mathematical model on which the estimation procedure is based should include all
the important physical effects encountered in the experiment.

2. The estimates of the functions should be consistent with the data measured during the
experiments.

The second requirement can be evaluated by predicting the measured values. It is desired
that the predictions are within the accuracy with which the measurements are made. The
predictions are made by simulating the experiment using the estimates of the functions with
the mathematical model on which the representation of the experiment is based, if all impor-
tant physical effects have been included (see requirement 1). If any notable physical effects
are omitted in that mathematical model, such as capillary pressure, those effects should be
included in the simulation of the experiment. Quantitative measures for validating candidate
solutions are provided below.

If a valid solution is found, it is to be expected that there may be other functions that
also satisfy those criteria. If there is sufficient information content, however, and the candi-
dates are relatively smooth, it is likely that the function values would not differ significantly.
Generally, the principle of parsimony18 could be used to select among candidate solutions.
The regression-based method10 provides for a systematic procedure to choose the simplest
representation that satisfies the solution requirements.



Solution Criteria

The following statistical criteria can be used with the predicted and measured data to evaluate
whether a set of estimates of the flow functions is a valid solution to the inverse problem.

Let Yi be a measured datum from the experiment, and let Fi(X) be the corresponding pre-
dicted value given the mathematical model and the estimates X. We construct the statistical
measure (objective function) J(X) = [~Y − ~F (X)]TW [~Y − ~F (X)], where W is a weigthing
matrix chosen as the inverse of the covariance matrix of the measurement errors. If we assume
random and uncorrelated measurement errors with normal probability distribution N(0, σ),
this gives a diagonal weighting matrix with elements Wi = 1/σ2

i , and the objective function
can be written as J(X) =

∑
i(εi(X)/σi)

2, where Yi − Fi(X) = εi(X) are the residuals.

For an estimate to fulfill requirement 2 above, the measure J should have a value consistent
with our assumptions on the distribution of the measurement errors. For measurement errors
with a normal distribution, an approximately normal distribution of the residuals would
satisfy this requirement. If the residuals are normally distributed, the sum of squares, J(X),
will then have a chi-square distribution χ2 with ν degrees of freedoms. The number of
degrees of freedom, ν, will depend on the representation used for the estimates. If we have
parametrized with n parameters (e.g., X = X(~β), dim(~β) = n), ν will be equal to m − n,16

where m is the number of measurements. From this, J will have an expected value, E(J), of ν,
and the standard deviation of the objective function resulting from the random measurement
errors will be σJ =

√
2ν.

We choose as one of the criteria that the value of the objective function of a candidate
solution to a given confidence level α should be consistent with a chi-square distribution with
an appropriate number of degrees of freedom, ν.

Even if the test on the measure J is passed, we still should check whether the residuals are
biased in some way. A statistical measure to do this is the number of runs that the time
series of the residuals makes. The number of runs is the number of times the residuals change
sign as we move through the data set. It can be defined as:

R =
m−1∑

i=1

ri, where ri =

{
1 if εi+1 · εi < 0
0 otherwise.

(1)

For large m, and with the number of positive and negative residuals approximately equal, R
will have an approximately normal distribution with an expected value, E(R), of m/2, and a
standard deviation σR =

√
m/2, (see e.g.9, p. 201). If the value of R falls outside an interval

with the given confidence level α about E(R), we will have to conclude that the residuals are
biased, and that the the predicted values can not be said to be consistent with the measured
data.

If the criterion on J is met while the criterion on R is not, this would indicate that our
assumption of uncorrelated measurement errors is wrong, or that modeling errors are present.
In either case, the estimate should be discarded. Correlated measurement errors could be
compensated for by modifying the weighting matrix19.



This analysis suggests that the following criteria should be met to accept a set of estimates
X as a solution of the inverse problem:

1. The value of the objective function, J(X), should pass a hypothesis test on the assumed
distribution, i.e.

χ2
ν,α/2 ≤ J(X) ≤ χ2

ν,1−α/2. (2)

2. The number of runs, R(X), should pass a hypothesis test on the assumed randomness
of εi, i.e.,

−zα/2 ≤
R(X)−m/2
√
m/2

≤ zα/2. (3)

Results and Discussions

We present here some examples to illustrate the use of the solution criteria. A parameter
estimation approach is used to estimate candidate solutions, whereby parameters within
selected functional forms are determined by minimizing a weighted least squares performance
index, taken to be J .

Example 1 – Estimation of kri(Si) From Production and Pressure Drop Data

Here we illustrate the estimation of relative permeability from a simulated multirate unsteady
state water drainage experiment. The capillary pressure function is fixed, and not part of
the estimation problem, and the true data are generated with a simulator5 using a selected
(or “true”) set of relative permeability functions. The true functions are constructed by
choosing one Corey6 and one Chierici7 representation of the relative permeability curves and
taking the mean value of these. After constructing the true data sets, “experimental” data
are generated by drawing uncorrelated measurement errors from a given normal distribution,
N(0, σ), and adding them to the true data set.

The course normally followed from here is to choose representations X = X(~β), of the flow
functions and solve a parameter estimation problem for ~β. We will demonstrate this solution
method with both the Corey and the Chierici representations. The parameter estimation
problem can be written as:

min
~β
J(~β) = [~Y − ~F (~β)]TW [~Y − ~F (~β)], (4)

where the vector of predicted values, ~F , now is a function of the adjustable parameters, ~β.

Utilizing the Corey representation,

kri(Si) = aiS
ni
i , i = o, w, (5)

a total of four parameters need to be estimated; ~βCorey = [aw, ao, nw, no]. With the Chierici
representation,

krw(Si) = bw exp(−d1R
d2
g ), kro = bo exp(−d3R

−d4
g ), Rg =

1− Sw
Sw − Swc

, (6)

six parameters need to be determined; ~βChierici = [bw, d1, d2, bo, d3, d4].
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Figurc 1: Bcst match to  a)  water production and b) differential pressure for the Corcy and 
the Chierici reprcscntations, with blow-ups of selected portions of the ylot. c) Contour plot 
of objcctive function about the nlillil~lutrl (2.6,2.1) for Corey representation. 

We now invcstignte how welt the experimental data can be reconciled using the Corey and 
4 

Chierici representations. E'or the same set of experimental data, wc cstimnte fIc,,, and 
flch,er,C,, solving Eq. 4. Figure l a )  and b) shows the reconciliation of production and prcssurc 
drop data,  respectively. The figure clearly shows that the Corcy rcprcsentation is not capable 
of reconciling the experinlental data by sinlulation. 'l'hus, we are not a.blc to  find a satisfactory 
solution to the inverse yroblenl utilizing this correlation. Note, however, that the global 
rninirnum of the parameter estirilation problem has been achieved. This is illustrated in 
Figure lc)  where we have plottcd the objcctivc function value in a contour ylot varying the 
two Corey exponents, nl and ns. The two other parameters were kept fixcd a t  thcir bcst 
estimates. The cross in Figurc lc)  at  nl = 2.6 and na - 2.1 is the solution of Eq.4. A 
similar plot is obtained if a, and a, (or any other combinations) are varied. The Chicrici 
representation leads to a better rcconciliation of cxpcrimcntal data,  and it is hard to  judge 
whether or not thc match is satisfactory based on this plot only. 

The estiluated relative pernleability functions, plotted in Figure 2, arc seen to  differ rroticeably 
over large saturation regions. Sitililar results have earlier been interprctcd as non-uniqueness 
of the inverse problem solution8. The two functions are both solutions of paranleter estima- 
tion problerns derived from the same inverse problem. This shows tha.t, although the two 
para.metcr estimation problcms cach admits only one solution, these two solutions arc not 
the same. 

Using thc proposed statistical criteria, we invvstigate more closely the two estinlates. Wc find -. 
that  J(/?,&,,) and J(@hicriri)  asre about 20,000 and 1,500, respectively, while the expected 
valua is about 800 with litilits of approxinlately 720 and 870 for a confidcncc level of 96%. 
R(@&,,,) and R ( @ & ~ ~ ~ ~ ~ ~ ~ )  are 132 and 316, respectively, with a 95% confidence interval 
about the expected value of 400 ranging from 370 to 430, approximately. Clearly, both the 
Corey as well a.s the Chierici rcprcscntations arc incapable of providing solutione which pass 
the criteria, and should be disca.rdcd. 



Figure 2: Estinlatcd rclative perlneability functions in the Corey and Chierici representations, 

We now investigatc a method which is capable of providing solutions meeting the criteria. It 
is itnyortant to  provide the functional rcpresentations with sufficient degrees of frccdorn so 
that  the data  are sufficiently predicted. Once achieved, additional degrees of frccdorn are not 
ncccssary since the data  do not warrant determination of additional features, This can bc 
accornplishcd with the regression-based approachlo. The method has been further developed 
and tested, and has been reportcd in a series of articles3. 13.  Typically, 8-splines1' 
have been utilized, to  rcpresent the functions, although other reprcscntations tnay be equally 
suitable. Firet, a representation with just a few bassis functions is used t o  represent each 
flow function. Thc corresponding parameter estimation problem is solved. Then, saturation 
regions where more flexibility is needed are detcrmined13, and additional basis functions arc 
inserted in such rcgions. The parameter estimation problem is solved again with this ncw 
represcntation, but using the previous estimated functions as initial values. The rnethod 
allows for increasing the flexibility in intervals of the curves where it is needed, and thus the 
use of as few paramctcrs as possible. 

This method has been utilized to  solve the example problem. We have utilized quadratic 
B-spline representations of the flow functions, and startcd the estinlation proccdure with 
only 4 paralnetcrs for the two curves, adding one parameter for each ncw step, except for 
the first, where wc addcd two. In Figure 3, thc time series of the residuals are plotted. 
Figurc 3a)-e) shows the residuals using the B-spline reprcscntation with increasing numbers 
of parameters, while Figure 3f) a.nd g) show the results for the Chierici and the Corcy 
representations, respectively. I t  can be observcd that the pattern in the residuals for the firat 
B-spline estimate is quite close to  that of the Corey rcprcsentation. The residual objective 
function and run values are shown in Figure 4. Again the Corey and first B-spline estimates 
(dcnotcd "step 1" and "stcp 2" in the figure) a.re quite dose, while the Chierici values are 
bettcr. The expected values nf J(,@) and R(P)  with one and two atandard deviations arc 
shown as ellipticly shaped regions in the figurcs. As the number of paxamctcrs in the n-spline 
reprcscntation is increased, it is observed that the values cjf ~ ( p )  and R(P)  get closer to  
the cxyccted values, and, fina.lly, the obtained values arc within two standard deviations (the 
wholc elliptical contour) of thc expected values (stctp 8). The estimated curvea a t  step 8 have 
the fewcst number of parameters with SIJ ficient flexibility to satisfy the statistical critcrja, 
and is chosen as our solution. A further increase in the number of parameters tllay 1ea.d to  
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E'igure 3: Time series of residuals for water produced (points 1-400) and for differential 
prcssure (points 401-800). a)-@) Steps 2, 3, 5, 7 and 9 of splinc expansion, with 6,7,9,11 and 
13 estimated parameters, respectively, f )  Chicrici and g) Corey rcprcsentations, with 4 and 
6 estinlatcd parameters. 

an  improved match, but would also lead to flexibility in excess of what is needed. As the 
variance crror5ncreases with increased flexibility, giving less accurate parameter estimates, 
we atop the regression-ba.scd mcthod a t  the first estimate that  meets the statjstical criteria. 

In  the solution criteria scction the proba.bility distributions of thc statistical lueasurcs were 
discuased. These distributions were the rcsult of nornlally distributed nleasuremcnt errors. 
To illt~strate the distribution, fuur othcr realizations of the mcasurernent errors wcrc used to 
construct four other estimation problems, and the resulting values of the statistical mca.sutes 
are plottcd as "alt.". We note that the spread it1 the values is of the order of one atandard 
deviation (thc dashed elliptical contour). 
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Figure 4: Nunlbcr of runs vs. objective function value. a) Step 1-4 of spline cxpa.nsion and 
the Corey rcpresentatiun. b) Step 5-8 of the spline cxpansion and the Chicrici representation. 
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Figure 5: a) Linear and b) logarithmic plot of thc estimated spline relative pcrmcability 
curves of step 8, together with confidence intervals and the truc curves. The Corey and 
Chicrici curves from Fig. 2 are plotted for comparison. 

Oncc a candidate solution is found that meets the statistical criteria, the accuracy of the 
estimates can be a.sscsscd. To get a quantitative rneasurc of the accuracy of the estimates, we 
invcstigate the sensitivity of the objective function near the obtaincd minimum. Jf F(& is a 

4 

set of predicted data  satisfying the criteria above, and if F is r* smoothly varying function of p, 
all parameters within a rcgion S of parameter space around the rninin~unl be* will give values 
of J and R acccptable by the criteria. The sizc of S is directly related to thc accuracy of the 
parameter estimates. Onc mcthod for calculating the sizc of S is the linearized covariance 
analysis4. This a.nalysis provides approxinlate confidence intervals around the estimated 
flow .functions, and gives a quantitative measure of the region of acccptable solutions. This 
artdysis has been utilized to dctcrmine the accuracy of flow function estimates4 and to dc.sign 

We have utilizcd the linearized covariance analysis to detcrmine the confidence intervals of 
the estimated flow functions in Example 1. The results from this analysis are shown in Figurc 
6. 'l'hc flow functions are weLl estima.ted in the lower water saturation region, while for higher 
saturations thc interval for k,, become largc. In that region the flow functions are 
poorly dcterrnined. We see that the truc solution lies within the confidence band of the last 
step in  thc regression-based approach. Notc that both the Chierici a.nd thc Corcy functione 
are outside of this band for most of the saturation region, and thus provide inferior estimates. 

As illustrated a.bovc, accurate, although not necessarily unique, estimates nlay be obtaincd 
provided that  tr flexible representation of the flow functions is utilizcd and that  there i s  
euficient information in  the data. As long as the estimate is accurate, thc non-uniqucncss 
will not dcstroy the value of the estimate, as the function values of those solutions meeting 
the criteria will are expected to be close. An cstimate of how close is given by the confidence 
interval. 

Individurtl eolution candidates may d i l l  be significantly diffcrcnt, as in the case of the Chierici 



and Corey representation above. The fact that they differ is not a question of non-uniqueness,
simply because the term non-uniqueness only is used for solutions of the inverse problem;
the Corey and Chierici representations are incapable of providing solutions to the inverse
problem in Example 1.

There are situations for which the information content in the data is not sufficient to determine
the functions. This is shown in the next example.

Example 2 – Estimation of kri(Si) From Production Data

Consider estimation of the relative permeability curves from a constant rate experiment where
the capillary forces are negligible and only production data are available.

The process is adequately described by the Buckley-Leverett equations14. This means that the
saturation of the phases (and hence, the production data) are determined by the fractional
flow function, f = 1/(1 + (kroµw)/(krwµo)), only. The fractional flow is dependent upon
the saturation only through the ratio kro/krw. Consequently, a solution of the estimation
problem, satisfying the statistical criteria, can be achieved by any two flow functions kro and
krw with this ratio.

We conclude that the the information content in the production data is not sufficient to
determine the individual relative permeability functions. More production data or more
accurate data (smaller standard deviation of the error distribution) would not improve the
situation in this case. This is a case of an inverse problem with a truly non-unique solution,
and we believe the term non-unique should be reserved for this kind of problems.

Conclusions

1. Criteria for validating estimates of relative permeability and capillary pressure functions
from laboratory data have been presented.

2. Examples have been provided to show that methods used to calculate relative perme-
ability from displacement data may provide inaccurate estimates when these criteria
are not met.
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