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ABSTRACT

The initial wettability of a reservoir is the result of complex interactions between
the crude ail, the connate water, and the rock surfaces. Adsorption of heavy polar organic
material, commonly identified with the asphatenes in crude oil, is responsible for
alteration of wetting properties of the rock. Measurements of contact angles provide a
convenient and conceptually simple approach to quantification of the wettability given by
oleic/aqueous liquid pairs at a smooth mineral surface. Flat quartz surfaces are often used
as arepresentative surface for sandstones.

This study reports changes in wetting induced by adsorption from crude oil on
quartz glass by brine/crude oil pairs. Wilhelmy plate wettability measurements were made
with either crude oil or arefined oil as the oleic phase. Wettability changes induced by an
asphaltic crude oil were much greater than those given by its maltenes or by a crude oil
with very low asphaltene content. Brine compositions included solutions of sodium
chloride, three synthetic reservoir brines, and ten- and hundred-fold dilutions of the
reservoir brines. Contact angles decreased with increase in brine concentration and with
increasing temperature of measurement. Contact angle results are compared with changes
of wettability in Berea sandstone and in synthetic cores exposed to brine and crude ails.

INTRODUCTION

The wettability of strongly water-wet surfaces can be changed by contact with
crude oil (Cuiec, 1991). Adsorption of heavy polar components, commonly identified
with asphaltenes from crude ail, is the main cause of wetting ateration (Benner and
Bartell, 1941; Collins and Melrose, 1983; Clementz, 1982; Dubey and Waxman, 1991).
This dteration is the result of complex interactions between the crude ail, the brine phase
and the rock surface that affect adsorption of crude oil components. The purpose of the
present work is to explore wetting alteration by adsorption from crude oils onto quartz
surfaces overlain by brine or coated with a brine film.

EXPERIMENTAL PROCEDURES

Quartz plate preparation. Rectangular plates of quartz glass were used as the solid
substrate. The plates were cleaned with a detergent solution, washed with distilled water,
and agitated ultrasonically in a 30% H,O, + 20% NH,OH (9:1) cleaning solution for 30
minutes. The plates were left to soak overnight, and then rinsed thoroughly with distilled
water. After cleaning, the plates were determined to be strongly water-wet from



observation of a wetting film and measurements of receding and advancing contact angles
of zero for clean decane and distilled water or brine (Mennella et al, 1995).

Fluids. The properties of three synthetic reservoir brines are listed in Table 1. Three
crude oils were used in this study (Table 2). Maltenes were prepared from heptane de-
asphalted A’93 crude oil (40:1 vol/vol). All of the oils were filtered and some light ends
were removed by evaporation. The n-decane used as the probe oil in some measurements
was purified by flow through packed columns of silicagel and aumina

Table 1. Composition of synthetic reservoir brines

Brine K* Na' ca'| Mg* cl HCO; | SO | | pH
(ppm) | (ppm) | (PPM) | (ppm) | (PPmM) | (ppm) | (ppm) | (M)

PB 52| 8374 | 110 24| 13,100 - -] 04] 68

DG* 7,237 | 4267 | 218 32| 13414 - -1 04] 70

[ 56 | 5,626 58 24| 8249 | 1,119 18| 03] 7.8

* KClI originates from clay stabilization treatment for injected brine

Table 2. Reservoir temperatures T, and oil properties at 25°C

Qil T.s(°C) | Density(g/mL) | Viscosity (cP) | C;-asphaltenes (wt%)
A’'93 80 0.895 39.3 4.0
A’'95 80 0.909 44.9 6.6

CS 55 0.886 69.0 0.8

Test procedures. Two experimental test sequences, identified as clean plate or crude-oil
treated plate procedures, are illustrated in Fig. 1. For the clean plate procedure, quartz
plates were soaked in the test brine for about a week to establish ionic equilibrium. Plates
were immersed in fresh test brine, and the brine phase was covered with a layer of crude
oil. In the second procedure, after the initial soaking, the plates were drained, but not
dried, and then submerged in crude oil for an aging time, t, at an aging temperature T,.
After aging, excess crude oil was removed from the plate by rinsing with toluene using the
method described by Liu and Buckley (1997). Toluene was removed by air drying.
Contact angles, determined by dynamic Wilhelmy plate method, were measured at
temperature Tr,. The plate was first immersed in the test brine, which was then covered
with a layer of clean decane. Details of the experimental procedures are available (Xie,
1996).

RESULTSAND DISCUSSION

Brine pH. Adhesion maps for many crude oils show adhesion at low pH and non-
adhesion at high pH (Buckley and Morrow, 1990). These transitions in wettability have
been modeled mathematically as sharp transitions from strongly water-wet to strongly oil-
wet (Kovscek et al., 1993). Measurement of change in contact angle with pH provides a
more detailed account of change in wettability with pH exhibited by crude oil. With



decane, gr and ga were zero for al values of pH (Xie, 1996). Contact angles measured
with clean plates (see Fig. 1) for CS and A’ 95 crude oils are shown in Fig. 2. NaCl brines
ranging in pH from 4 to 10 and molarity from 0.01 to 1 were tested. For A’95 crude oil at
low brine pH, advancing contact angles were high with the most dilute brine giving the
highest angles. As the brine pH increased to 7 or 8, most advancing angles decreased to
35° or less. The effect of pH on interfacial tension (IFT) may aso be significant. IFT vs.
pH isincluded in Fig. 2 for the same range of pH and salinity. Sensitivity of IFT to ionic
strength was highest for CS crude oil at pH = 10.

Receding contact angles were consistently low (all less than 45°), and relatively
insensitive to both pH and salinity over the range of investigation. Both crude oils showed
minimum advancing and receding angles and maximum IFTs at neutral pH, with that for
CS oil being particularly well identified. For purified decane/brine systems, interfacial
tensions were much higher than for crude oils (Fig. 2).
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Aging timet, and aging temperature T,. For oil-treated plates aged at room temperature
for times ranging from 1 to 500 hours, neither A’93 nor CS crude oil promoted contact
angles with PB brine of above 60° (Fig. 3). Contact angles for CS crude oil increased
from 30° to about 60° during the first 72 hours of aging, but were only about 30° for
aging times ranging from 144 to 504 hours. The behavior of plates contacted with A’93
crude oil showed a similar trend with final
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At T, = 88°C, aging of plates in crude oil resulted in marked increase in contact
angles for both crude oils relative to those observed after aging at room temperature (cf.
Figs. 3, 4a, and 4b). For CS crude oil, advancing angles again increased (from 69° to
95°) with t, up to 72 hours but fell to about 75 + 8° with further aging. Contact angles on



plates aged in A’93 crude oil increased with aging times of up to 96 hours. For 96 hour
aging, ga was 150°. Above 96 hours aging, the advancing angles were al in the range of
150 to 170°; receding angles were all much lower but showed comparable trends.

Oil composition. The wetting properties of the rock can be atered from strongly water-
wet by adsorption of polar compounds, often identified as asphaltenes, from the crude ail.
Results for de-asphalted A’93 crude oil (heptane maltenes) are shown in Fig. 4c. Change
in wettability induced by the maltenes was, as expected, less than that for the parent crude
ail (cf. Figs. 4b and 4c) but still comparable to the changes for CS crude oil (cf. Figs. 4a
and 4c). The differences, observed for different oils with the same brine, underscore the
importance of crude oil composition in wetting alteration.
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Table 3. Receding angles (deg.) corresponding to advancing angles shown in Fig. 5

Brine 001CS 01CS CS [001DG 0ADG DG ([001PB 01PB PB
Tm=25°C 37 28 31 32 39 55 49 42 43
Tn=Tres 35 29 15 24 49 40 30 33 37

Brine composition. Imbibition and waterflood tests have been reported for synthetic
reservoir brines and for dilutions to onetenth and one-hundredth of their original
concentrations (Tang and Morrow, 1996). The advancing contact angle measurements
shown in Fig. 5 are presented in Fig. 6 as plots of contact angle vs brine composition.
Dilution of the brine resulted in increased advancing contact angles for all of the high
temperature tests. The same trend was observed at low temperature for CS and DG
brines.
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Contact angles and oil recovery from cores. The contact angles measured on flat quartz
surfaces permit comparison with previously reported information on the wettability of
porous media as indicated by spontaneous imbibition and waterflood recovery.
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Effect of aging time: Recovery of A’93 crude oil by spontaneous imbibition vs.
dimensionless time is shown in Fig. 8 for nominal initial water saturations (S,i) of 15%
and 20% (Wang, 1996) and aging at 88°C for times ranging from 4 to 240 hours (Zhou et
al., 1995). Comparison of recovery of refined oil (also shown in Fig. 8) and crude ail by
imbibition for different S,; demonstrates the marked change in wettability caused by
exposure of the rock to A’93 crude oil. Lower S,; results in lower imbibition rates and
recovery. However aging time, for the range studied, clearly has a dominant effect on
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from two separate experiments (Zhou et al., 1996). For the results shown in Fig. 9, the
values of I¢ for displacements with CS, 0.1 CS and 0.01 CS brines are 0.8, 0.81 and 0.90,
respectively. This suggests some dight increase in water-wetness with brine dilution.
However, other factors suggest the possibility of an opposite trend. Modest increases in
contact angle have been shown to inhibit snap-off and can thus result in increased
displacement efficiency (Li and Wardlaw, 1986). A maximum in imbibition recovery with
decrease in water wetness has been ascribed to this mechanism (Ma et al., 1994). The
marked increase in contact angle at T, = T With decrease in brine concentration shown
in Fig. 6a, also indicates that water-wetness decreases with brine dilution. Increase in oil
recovery with decrease in water wetness is consistent with previous observations
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Fig. 9 The effect of brine concentration on recovery of CS crude oil by imbibition
and waterflooding from Berea sandstone (Morrow, et al., 1996).



(Jadhunandan and Morrow, 1995) and with the predictions of network models assuming
ranges of contact angles (Dixit et al., 1996). Thus, large differences in oil recovery can
occur in situations where the underlying effect of oil/brine/rock interactions is not obvious.

Contact angles and imbibition: Relationships between displacement behavior and
contact angle were studied using cores formed from consolidated polytetraflueroethylene
(PTFE) powders and pure liquids vs air (Morrow and McCaffery, 1978). Spontaneous
imbibition measurements showed that with an initial liquid saturation in PTFE cores,
liquids with equilibrium contact angles at flat surfaces greater than about 62° did not
imbibe. Thus, if contact angles measured at quartz surfaces (see Fig. 4b) are relevant to
the wetting behavior of Berea sandstone, the displacement of oil by spontaneous
imbibition is surprising, particularly for low pH brine (cf. Figs. 2 and 7) and for the long
aging times (above 100 hours) that give advancing contact angles in the 150-180° range
(cf. Figs. 4b and 8).

Although, for PTFE surfaces, roughness could result in even higher contact angles
(Morrow, 1975), it is probably reasonable to regard the advancing angles measured for
crude oil and brine as limiting values. Ma et al. (1996) calculated that water held in the
corners of triangular pores at the drainage curvature, with gz = 0°, can promote
spontaneous imbibition even when advancing contact angles at the drained surfaces of the
tubes are as high as 130°. Water retained by fine pores and surface asperities as well as
wetting of minerals that are more water-wet than quartz may aso promote imbibition.

Achievement of the positive oil-brine interface curvature necessary for imbibition
in porous media may sometimes also involve slow decrease in contact angles with time.
This would explain the induction time required before imbibition commences and very
dow rates of imbibition, as shown in Fig. 8 (see discussion by Zhou et al., 1996). Liu and
Buckley (1997) showed decreasing contact angles on oil-treated surfaces soaked in brine.
Change towards water-wet conditions was reported by Tang and Morrow (1996) for
Berea sandstone cores aged at waterflood residual oil saturation. This shift in wetting is
consistent with reports of more water-wet conditions in reservoir cores after
waterflooding (Jin et al., 1985).

CONCLUSIONS

1. The Wilhelmy plate technique is a convenient method of characterizing the wettability
of oil/water/solid systems through measurement of contact angles under dynamic
conditions.

2. Wettahility changes on quartz surfaces induced by crude oil are strongly dependent on
crude oil composition. The wettability of an oil/brine/quartz system aso depends on
surface pretreatment, the brine composition and pH.



3. Aging temperature is demonstrated to be a very important factor in wetting alteration.
Quartz surfaces aged with crude oil at room temperature exhibited wettability change,
but all remained water-wet. For aging at elevated temperature, water-wet quartz
becomes intermediately wet or strongly oil-wet, depending on the crude oil
composition.

4. Contact angles measured at reservoir temperature increased with decrease in brine
concentration.

5. The wetting and recovery behavior of mineralogicaly and geometricaly complex
sandstones and an artificial siliceous media showed trends that could be related to
contact angle measurements at smooth surfaces. For al these trends, porous media
appear to be generally more water-wet, as evidenced by spontaneous imbibition, than
indicated by contact angle measurements at flat quartz surfaces.

6. Wettability states induced by adsorption of crude oil components sometimes appear to
revert towards water-wetness.
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