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ABSTRACT 

The statistical description of pore space seen in a 2-D section has been successfully applied for 
the characterization of the pore structure of different types of porous media using 1) the optical 
porosity and 2) the spatial distribution of porosity, which can be described by the 
autocorrelation function(ACF) of pore space seen in 2-D space. Statistics obtained from images 
include the image porosity, specific surface area, and a length scale obtained from the integral 
of the image autocorrelation function. The number of images required to predict the 
permeability of a core sample accurately, using the porosity($,) and the integral scale of the 
autocorrelation function for an image (Ii), is adressed in this paper. The following 
phenon~enological permeability model was found to describe the behavior of many samples: 

where k is the predicted absolute permeability of the sample, <$,> and < Ii> are the average 
porositv and average integral scale of ACF of all images respectively, while A, B, and C are 
parameter values determined by fitting experimentally determined permeabllities of tested 
core samples. The proposed correlation accounts not only for reservoir porosity, but also the 
pore structure characteristics of the medium as determined from statistics of 2-D images. The 
proposed form of permeability correlation is more robust than other similar methods. 
Furthermore, at least 10 randomly taken images from a section are required to make a 
reasonable estimate of the permeability of a core sample. The permeability distribution at the 
scale of 512 by 512 pixels with 1.5 microns resolution can be estimated using Monte Carlo trials 
if the number of images taken for any given sample is 40 or greater. 

INTRODUCTION 

It is possible to obtain valuable information for property estimation by analyzing images of 
reservoir core samples. If the pore structure of a sample is "random", then the porosity of the 
specimen is equal to the "optical porosity", which can be determined from polished thin 
sections (Dullien, 1992). Normally, it is necessary to impregnate the pores with a substance 
such as epoxy resin or Wood's metal (a low meltmg point alloy) in order to make the pores 
more visible. Experimental data regarding pore throats and pore bodies have been acquired by 
the image analysis of pore casts using serial sectioning techniques (Dullien and Dhawan, 1974; 
Wardlaw and Cassan, 1978; Koplik et al., 1984; Kwiecien et al., 1990; Lymberopoulos and 
Payatakes, 1992). The analysis of capillary and transport phenomena in porous media using 
network models of pore structure by various authors(e.g., Dullien, 1992; Ioannidis and 



Chatzis, 1993; Bryant et  al., 1993) have demonstrated the importance of the size distribution of 
pore throats and pore bodies, the connectivity of the porous network and the spatial correlation 
of pore sizes. Unfortunately, none of these important aspects can be reliably estimated from 2- 
D images because the actual 3-D pore structure appears as a set of disconnected void regions 
which cannot be definitively h k e d  to particular features which we refer to as pores bodies, or 
pore throats. 

In an attempt to overcome these lunitations (Ehrlich e t  al., 1991; Ferm e t  al., 1993; Bowers e t  al., 
1994), empirical models have been proposed which couple data obtained from both mercury 
porosimetry experiments and 2-D image analysis for permeability predictions. Recognizing 
that explicit pore throat information is absent from 2-D images and that mercury porosimetry 
data only provide information regarding pore volumes accessed by throats of a certain size, 
these correlations were applied to selected data sets with some success(Coskun and Wardlaw, 
1993)., it has yet to be demonstrated that they can be generally applicable for different types of 
porous media. 

Despite recognized limitations of pore structure information conveyed by 2-D image data, 
significant correlations have been identified between permeability and 2-D geometrical features 
of pore structure data(Berryman and Blair (1986 & 1987), Coskun and Wardlaw,1993). Coskun 
and Wardlaw(1993) developed an empirical model which can explain the variance in 
permeability of over 50 sandstone samples using a diameter distribution of the largest 
inscribed circles ("porel" diameters) within visible 2-D void spaces on petrographic thin 
sections. Their success is attributable to the correlation between the 2-D porel sizes and the 
pore throat sizes which control permeability in 3-D networks. Although such correlations are 
likely not universal for widely different materials, the work of Coskun and Wardlaw (1993) 
does nevertheless corroborate similar observations made by other investigators (Yuan, 1989; 
Ehrlich e t  al., 1991; McCreesh et  al., 1991). 

Berryman and Blair (1986 & 1987) proposed a correlation for permeability which follows the 
form of the well known Kozeny-Carman relation, as shown below: 

k ,  =+ 'I bFS2 (1) 

where + is the porosity, b is a shape factor (2< b < 3), F is the formation resistivity factor, and S 
is the specific surface area. Although this simple correlation performs surprisingly welluewlal, 
1996), the authors faced a problem in extracting the required image statistics (e.g., porosity and 
specific surface area). They contended that for accurate porosity estimates one image 
magnification is required, however, another magnification of the image is required to produce 
the necessary specific surface area needed in Eq.(l) to make accurate prediction of permeability. 
The "optimum" image magnification factor is not known a priori, and the uncertainty in 
estimating F and S from image analysis is a major weakness of this approach. 

Because of the lnherent difficulties in estimating accurately the speclhc surface area from image 
analysis, the work of Ioannidis et. a1.(1995, 1996) demonstrated that the average of the integral 
scale of the ACF's of pore space seen in 2-D images of a polished section along with the 
average porosity of a core sample are sufficient parameters to predict the permeability using a 
phenomenological model. This problem was addressed in detail by Jewlal(1996) and the intent 
of this paper is to present the key findings for permeabhty estimation using statistical 
parameters obtained from 2-D image analysis. 



THEORY 

It is generally accepted that bulk porosity has a strong influence on the permeability of a 
porous medium. However, the manner in which the porosity is distributed is of critical 
importance and can be quantified only by way of a statistical analysis at the sub-pore scale. So 
far, the parameter which has been expected to reflect to some degree the spatial variation of 
porosity is the formation factor, F. Several correlations between permeability, porosity and 
formation factor have been proposed(Katz and Thompson, 1986; Dullien, 1992), but no unique 
correlation will accurately predict permeability for all media. 

An 11-point correlation function in image analysis measures the probability that n points in a 
specified geometrical arrangement all reside in the phase of interest within a two phase system 
(defined by the phase function). For example, the one-point correlation function is the 
probability that any point lies in the phase of interest. If the phase function is defined for every 
possible point within the system, then the mean of the one-point correlation function over the 
space will produce $, the porosity: 

31 = crcx,, = s (2) 
The brackets ( )indicate a volume average over the spatial coordinate x. 

The two point correlation, is the probability that two points a specified distance apart are both 
within the phase of interest. As described in detail by Berryman and Blair (1985), it provides a 
great deal more information and is defined as follows: 

&(r , , r2 )=  ~ ( x + r , ) f ( x + r 2 ) ,  

where rl and r2 are distances (lags) from the reference point x. If homogeneity and isotropy can 
be assumed, then the two-point correlation function can be simplified to: 

32(r1,r2) ='2(Ir2 - r l ~ )  (4) 

The three-point correlation function is the probability that all three vertices of a specified 
triangle lie in phase one. It is defined as follows: 

( r 1 r 2 r )  = ( f (x+r l ) f (x+r2)f(x+r3))  

Since two points can be found on a h e ,  and three points lie on a surface, it is possible to 
measure il, i2, and s3 by analyzing data in 2-D images. Only the one-point and the two-point 

correlation function statistics were used in our work. 

Investigations involving correlation function statistics in image analysis were first attempted by 
Corson (1974), who took photographs of selected material, magnified, and then aligned a grid 
upon them. This formed the basis for recording the values designating either rock or pore 
space at each grid point manually. The correlation functions were then calculated from the 
tabulated data. This method however was tedious, since it required an operator to view each 
point and to assign each individual grid location a value. An elegant method to obtain the 
same information using modem image processing techniques was pioneered by Berryman 
(1985, 1987). The autocorrelation function R,(F) is a normalized form of the two-point 
correlation function S2(F), employed by others (Berryman and Milton, 1985; Berryman and 
Blair, 1986 & 1987), and is calculated by the relation: 



For images of many samples, Ioannidis et.a1.(1996) found the following analytical model to fit 
the average autocorrelation function data very well: 

L 2 

where the shape parameter n and the correlation length /Z of the ACF are obtained by fitting the 

average ACF data of a sample. The autocorrelation function, Rz (P), is a measure of the 

probability that given a void pixel within the medium, another void pixel is located a distance 
7 away. Naturally, porous media composed of larger pore spaces will have autocorrelation 
functions which look significantly different than those produced from rocks with scattered 
porosity configured in smaller pore spaces. In an attempt to quantify this difference, the 
Integral of the autocorrelation function can be employed as the discriminatmg statistic property 
(loannidis et. al., 1996). 

The integral scale of an ACF, I = ja R, ( ~ ) d r ,  can be determined by numerical integration 
0 

of Eq(6) , or analytically, by taking the integral of Eq.(7). The magnitude of this integral is 
directly proportional to the average size of the sections of pore space seen on 2-D images. 
Since media composed of smaller pores will produce autocorrelation functions that will drop 
off quickly to zero at shorter lags, the resulting integral will be hkewise quite small. When the 
pore spaces are large, the autocorrelation function wdl remain at a significant value for larger 
lags and will produce a larger integral. Thus, the value of the resulting integral can be viewed 
as an indication of the characteristic size of the pore spaces visible in a 2-D section of a porous 
material. With the set of average porosity and integral scale values, we can differentiate 
porous media by way of their autocorrelation function. Figures 1 and 2 show typical behaviour 
of the ACF and the 2-point correlation function of a sample. 

Another important property of the two-point correlation function (for isotropic porous media) 
is the slope of the curve at the origin, which is used to estimate the speclfic surface area of the 
sample. bebye e t  a1 (1957) derived the following result : 

dS2 (4  - - AS lim - -- 
r + ~ +  

dr 4 V  

The derivative of Sz(r) at the origin is related to specihc surface area : ,S2 (0) = - S / 4 (9) 

The specific surface area is defmed as S = As/ V, where As is the total surface area, and V the 
total volume. An estimate for the value of S is required when applying Eq.(l) 

In our efforts in developing a computer enhanced core analysis (CECA) methodology for the 
prediction of numerous properties in our laboratory, it was found that the integral scale of the 
ACF of an image, Ii and the corresponding porosity of a 2-D image are independent 
variablesuewlal, 1996; loannidis et. a]., 1995, 1996). The following phenomenological model is 
proposed for permeabhty prediction only: 



k = A q i > B  < li>C (10) 
When multiple estimates for permeability are made on the same sample using different images 
from a section of a core sample, it is improper to attempt to pool the results using an arithmetic 
average. This would be akin to assigning the properties of an arbitrary regon to the whole 
system, while discounting contributions from less representative portions, no matter how 
important they may be. Gelhar and Axness (1983) have studied the problem of averaging the 
permeability of porous media composed of regions of different permeability which are 
correlated in space. Their work has shown that the best estimate for the effective permeabhty 
is computed by: 

2 
where k ,  is the geometric mean of the permeability estimates, and 0, is the variance of the 

natural log of the permeability estimates. However, the arithmetic average is useful in the 
sense that it allows for a quantitative estimate of the variance of permeability estimates. 
Similar analysis is not possible with k,ff, as only a single value is produced. 

Experimental Data 

A large number of high quality back-scatter mode scanning electron images(BSE) for 14 core 
samples from 4 formations in Western Canada were used to investigate the relationship of 
sample permeability to core porosity and the integral of the ACF function, as part of the 
Computer Enhanced Core Analysis(CECA) project in our laboratory(1oannidis et. al., 1995, 
1996). BSE image data were obtained from a section of a core plug, measuring 3.8 cm in 
diameter, while the core permeability and porosity were measured in the rest of the core 
sample. About 60 BSE images per core sample, each consisting of 765 x 573 picture 
elements(pixe1s) were taken for statistical image analysis. The conventional core analysis 
property values and the statistical properties obtained by image analysis are summarized in 
Table 1. As seen in this table, permeability varied by three orders of magnitude. Additional 
images and core analysis data for sandstones investigated by Wardlaw and Coskun(1993) were 
also used by Jewlal(1996) and Ioannidis et. al. (1996) for comparison of the various models that 
use image analysis data to predict core permeability. 

Results and Discussion 

Integral vs Porositv Plots: A graphical representation of the relationship between image ACF 
integral, I , ,  and image porosity, $i, was prepared for each of the CECA samples, showing the 
95% joint confidence region for Ii and $b as illustrated in Fig. 3 for sample 7. Typically, points 
which lie outside the ellipse correspond to statistical outliers at the designated confidence level. 
Up to about 20% of image data were found to fall outside the 95% confidence regionuewlal, 
1996). From the appearance of the results in Fig. 3, the parameters li and +i are independent. 
This behavior was found to apply for the rest of the CECA samples. The apparent 
independence of the two parameters, justdies the use of the empirical permeabhty model 
defined by Eq.(lO). The composite scatter-plot, showing all 916 points which make up the 
CECA data set of the autocorrelation function integral scale 1 vs. I$ plot is shown in Figure 4. 
It is clear that for the wide range of image porosity values which comprise the CECA data set, 
the corresponding ACF integral values exhibit no discernible trend with porosity values. 



Figure 4 also illustrates that sample images of the Montney formation(a dolomite siltstone) are 
very different than the other formations due to the fine pore sizes present in them. 

Parameter Estimates for the Empirical Permeability Model: Based on various methods 
described m Jewla1(1996), parameters for the model defined by Eq.(lO), for various sets of 
image data. The empirical parameters A, B, and C were determined by fitting the data in a 
variety of ways mentioned in Table 2. For each of the methods used, a summary of the 
parameter values found is shown in Table 2. Utihing these parameter values and information 
in Table 1, the predicted permeability values are shown in Table 3. 

Upon examination of the squared sum of residual errors shown in Table 2, it is clear that 
emploving all available CECA images data, produces a correlation with a poor abiltty to match 
the averaged CECA image data. The sum of residual errors squared in method (iii) seen in 
Table 2, is approximately twice that of the other methods, while the regression R2 for the data is 
twenty per cent poorer. Clearly, without some averaging or filtering of the individual image 
data, outliers have a marked negative effect on the effectiveness of the model. Least squares 
regression R2 and sum of residuals squared values are almost identical to those obtained by 
employing a simple averaging technique. This result indicates that the image data are indeed 
normally distributed, with outliers on the high and low ends. If the outlier data are removed, 
the 95% confidence region data set produces a similar result as the intact data set( see Table 3). 

Comparison with other methods: Using the empirical model-iv parameter values(given in 
Table 2) in Eq.(lO), the predichon of permeability from every image of the CECA data in the 
95% joint confidence region of the I vs 4 was made and the results are shown in Fig. 5(a). 
Similarly, using the estimated specific surface area of every image based on the two point 
correlation function of every image(e.g., using Eq.(8)) and the estimated formation resistivity 
factor F, based on image porosity(e.g., F = (b-2 ), the permeability value by applying Berryman's 
approach via. Eq.(l) was also calculated for every image. The calculated results are shown in 
Fig. 5(b), by plotting the image predicted permeability vs. the core measured permeability Both 
approaches produce a spectrum of predicted permeabilities, however, the average value of 
permeability predictions by our method using model-iv parameter values are in better 
agreement with experimental values compared to the case of using Eq.(l). The drawback in 
applying Eq.(l) is the inherent uncertainty in the estimation of the specific surface area, which 
appears to be under-predicted. Jewlal(1996) showed that by increasing the magnification 
factor by a factor of two, the estimated surface area from the two-point correlation factor 
increased by 20%. Generally, for samples of low permeability, use of Eq.(l) with image derived 
parameter values for S tends to over-estimate the permeability value. 

The images of sandstone samples obtained in the work of Coskun and Wardlaw (1993) were re- 
analyzed by Jewlal (1996) uslng the approach developed in the CECA project. Because of the 
low magnification factor used in acquiring these images, the reported core porosity value was 
used in applying the correlation of Eq.(lO), because the average of image porosity values for 
any given sample were generally much lower than the measured core porosity. The integral 
scale of the ACF is not very sensitive to the magnification factor, as the relatively large pore 
features seen in 2-D images contribute the most for its value. Using the estimated parameter 
values of Eq.(lO) by the image data base of CECA samples reported in Table 2 for model-iv, the 
predicted permeabilities for the samples tested by Coskun and Wardlaw (1993) have as shown 



in Fig. 6. It is encouraging to see the parameter values obtained with the CECA data set were 
accurate enough to make excellent predictions of permeability values of other samples. 

Effect of Number of Images: - Available images from any core sample ranged from 41 to 75 
images. Performing statistical significant tests on average image porosity versus core 
porosity(the only measured statistic with an available experimental value), it was found that 
groups of less than sixty randomly chosen images perform just as well as those with greater 
than sixty images. To explore the effects of the number of images used on the estimated 
permeabilities, Monte Carlo simulations were performed on each core sample to determine the 
variability in permeability predictions. The Monte Carlo simulation method involved the 
generation of random data sets with the same statistical properties as that of a known 
experimental sample. A computer program was coded which evaluated a large number of 
possible predictions of permeabhty based upon sets of 5, 10, 20, 40, and 60 images. The 
permeability predicted from an image was calculated using Eq.(lO) and model-iv parameter 
values. In each realization with a set of 5, 10, , the arithmetic average, the geometric average, 
and the effective permeability computed by way of Eq.(ll) were calculated respectively. By 
performing many trials, frequency distributions for the arithmetic mean, geometric mean, and 
effective permeability were obtained. Typical behavior for the CECA sample 7 is shown by the 
plots in Fig. 7. More details are provided elsewhere (Jewlal, 1996). 

Based on Monte Carlo simulations, the mean of the predicted permeabdity using the arithmetic 
average is not sensitive to the number of images in a set. This distribution over-predicts the 
sample permeability estimated using the arithmetic average of all image porosities and the 
arithmetic average of all image integral scale, <I>, shown to correspond to the dashed vertical 
line in Fig. 7. The mean of the predicted permeability distribution using the geometric average 
of a set decreases significantly as the number of images increases, and is the smallest of them. 
The mean of the Kerf permeability distribution decreases a little as the size of the set of images 
Increases and is more close to experimental values. For sample 7, the mean of the K,ff 
distribution decreased as follows: 119 mD for 10 images, 114 mD for 20 images, and 112 mD 
for the case of sets with 60 images. All three distributions become narrower as the size of the 
set of images increases. 

Conclusions 

The porosity and integral scale of the autocorrelation function were used to develop a 
correlation to predict formation permeability for the 14 samples of the CECA data set. The 
resulting correlations were able to predict accurately the permeability of samples. 
It was verlfied that the correlating parameters, namely, image porosity and image 
autocorrelation function integral, are sufficiently independent to warrant their use in a 
permeability model. It was also shown that simple averaging of image data is adequate to 
produce representative statistics for use in permeability correlations. 
It was found that individual images could easily provide unrepresentative sample data due 
to the variability encountered in the sample image data. However, when sufficient number 
of image data were available, image porosity accurately estimated that of the core. 
Monte Carlo simulations revealed that the number of images required for accurate 
prediction of permeabhty depends largely upon the variabdity of the sample being 
imaged. It was shown that there exists little incremental value in acquiring large data sets 



in excess of approximately forty images. Furthermore, it was shown that the effective 
permeability model is an excellent predictor of formation permeability. 
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Table 1: Core Analysis Data and Statistics of Image Analysis 

Fornlation 

Pekisko 
(dolomite) 

Montney 
(dolomitic 
siltstone) 

Gilwood 
(sandstone) 

Viking 
(sandstone) 

Pixel 
size 

3.13 
1.54 
1.54 
1.54 

1.05 
1.05 
1.05 
1.05 

3.13 
1.54 
3.13 
3.13 

1.54 
1.54 

Results of Core 

Core 
Sanlple 

58A 
45A 
45B 
35B 

9B 
31 B 
30B 
31 A 

16 
15A 
7 
4B 

4A 
1 

Analysis 

Core 
4 

0.197 
0.153 
0.129 
0.101 

0.152 
0.129 
0.122 
0.102 

0.202 
0.173 
0.134 
0.069 

0.198 
0.125 

NO. of 
Ilnages 

58 
69 
68 
61 

69 
75 
48 
n 

70 
66 
58 
58 

70 
75 

k (mD) 

728 
25.9 
28.0 
3.51 

5.29 
1.78 
2.09 
0.47 _ _ _ _ - _ _ _  

646.0 
114.0 
412.0 
1.65 

6.5 
3.0 

Image Analysis 

Avg. 
c+,> 

0.204 
0.149 
0.130 
0.109 

0.119 
0.125 
0.125 
0.109 

0.192 
0.168 
0.129 
0.113 

0.197 
0.117 

Results 
Average 
specific 
surface 
area, S 
(p111.1) 
0.0241 
0.0522 
0.0380 
0.0543 

0.0719 
0.0846 
0.0824 
0.0864 

Integral scale of 
ACF, CIi> (pm) 
(1) (2) 

59.85 
23.55 
29.34 
41.54 

7.59 
7.63 
7.61 
6.35 

53.1 
22.58 
26.63 
39.0 

7.40 
7.34 
7.44 
6.18 

45.49 
36.62 
42.41 
62.18 

21.83 
27.92 

44.77 
32.00 
39.90 
45.36 

20.44 
25.27 

0.0284 
0.0538 
0.0158 
0.0194 

0.0732 
0.0288 



Table 2. Parameter values for Equation (10) obtained by various methods. 

Table 3: Comparison of predictions by various models based on Eq.(lO) and Eq.(l) 

Parameter 
values 

Method used 
model -(i) : 
Employ Eq.(7) for fitting the 
average ACF to determine the 
average integral, <Ii > 

model -(ii): 
< I >, using numerical integration 
of ACF's of all images in  a sanlple 
model -(iii): 
use all CECA inlages 
model -(iv): 
Employ images witlun the 95'/0 
confidence region 

Note:(l) and (2) in table above refer to methods (i) and (ii) for parameter values in Table 2. 

Sum of Correlation 
A B C Residuals coefficient 

Squared R2 

Core 
Sanlple 

58A 
45A 
45B 
35B 

98 
31B 
30B 
31'4 

16 
15A 

7 
48 

4A 
1 

8969 

6323 

0.517 

3.894 

Core 

6 

0.197 
0.153 
0.129 
0.101 

0.152 
0.129 
0.122 
0.102 

0.202 
0.173 
0.134 
0.069 

0.198 
0.125 

5.734 

5.608 

1.5928 

2.459 

FRF 
F 

24.2 
40.3 
46.8 
-- 

54.1 
-- 

40.1 
-- 

-- 
45.7 
66.6 
76.6 

-- 
-- 

1.672 

1.774 

2.3174 

2.2501 

k 

(mD) 

728 
25.9 
28.0 
3.51 

5.29 
1.78 
2-09 
0.47 

646.0 
114.0 
412.0 
1.65 

6.5 
3.0 

1.647 E5 

1.69 E5 

3.203 E5 

1.632 E5 

0.98 

0.98 

0.794 

0.987 

Avg. 
<$i> 

0.204 
0.149 
0.130 
0.109 

0.119 
0.125 
0.125 
0.109 

0.192 
0.168 
0.129 
0.113 

0.197 
0.117 

Integral scale of 
ACF, <Ii> 

( P I )  

Average 
specific 

surface area, 
S 

(pm-1) 

0.0241 
0.0522 
0.0380 
0.0543 

0.0719 
0.0846 
0.0824 
0.0864 

0.0284 
0.0538 
0.0158 
0.0194 

0.0732 
0.0288 

(1) 

59.85 
23.55 
29.34 
41.54 

7.59 
7.63 
7.61 
6.35 

45.49 
36.62 
42.41 
62.18 

21.83 
27.92 

(2) 

53.10 
22.58 
26.63 
39.00 

7.40 
7.34 
7.44 
6.18 

44.77 
32.00 
39.90 
45.36 

20.44 
25.27 

Predicted Perlneability 

k (mD) 

Model-I 

923 
32.0 
21.2 
13.8 

1.33 
1.78 
1.77 
0.60 

41 2 
133 
37.5 
33.3 

140 
10.6 

Model-I1 

976 
36.8 
22.9 
16.8 

1.44 
1.87 
1.92 
0.64 

51 3 
134 
45 

26.9 

148 
11.6 

Model-IV 

595 
40.1 
41.6 
63.6 

1.87 
2.08 
2.14 
1.01 

349 
118 
101 
98 

63.7 
28.5 



Figure 1. Typical autocorrelation function (ACF) for sample 58A (integral scale=72.4 pm). 

Figure 2. Typical 2-point correlation function for sample 58A 
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Figure 3. Integral scale of ACF vs. image porosity (sample 16). 
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Figure 4. Integral scale of ACF vs. image porosity (all CECA data) 
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Figure 5. Permeability predictions from individual image data within the 95% confidence 
region: (a) Model IV; (b) Correlation of Berryman and Blair (1986). 



, In (k,) = 8.752 + 5.608ln(+i) + 1.7741n(li) 
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Figure 6. Prediction of the permeability of Coskun and Wardlaw's (1993) 
data set using model IV. 
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Figure 7. Monte Carlo permeability distributions of permeability estimates using a 
limited number of images: (a) sets of 10 images, (b) sets of 20 images, 
(c) sets of 40 images (sample 7).  
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Figure 7. (continued) 
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