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ABSTRACT:
The common univariate analysis to evaluate the control of petrographic elements on permeability uses a
quasi-quantitative approach. Relying on regression models, this analysis quantifies the behavior of
permeability by isolating individual petrographic elements. Though the method does provide an overall
picture of the petrographic control, it suffers one serious drawback. Its shortcoming lies in comparing the
regression models with best correlation coefficients irrespective of the type of the curve fitCe.g., quadratic
versus logarithmic. This inequitable comparison forces the researcher to make qualitative judgments, based
on intuition and experience, regarding the petrographic control.

Various multivariate techniques have also been attempted; some as advanced as the Karhunen-LoPve
transform that examines the covariance matrix and ranks the influence of each petrographic measurement
on permeability. These methods tend to be mathematically complex and are not amenable to simple
computer programming. In this paper, we present a simple fuzzy logic algorithm which accomplishes the
ranking with relative ease. The algorithm uses non-boolean Areasoning@ to derive the simultaneous ranking
of all the petrographic elements. The primary advantages of this algorithm are speed of processing and
elimination of qualitative petrographic interpretations.

Additionally, we demonstrate a novel thin section analysis technique which uses a minipermeameter, to
increase the quantity and quality of petrographic data. The investigation volume of the minipermeameter
and the proposed thin section analysis are comparable, unlike the larger measurement volume of a core
plug. As a result,  the measurementsCusing the new thin-section analysisCresult in more reliable
correlations. The new method also conserves precious core material. The data collected with the  new 
technique were used in our fuzzy logic analysis of two types of sandstones: the Queen and the Santa Rosa.
Results from the conventional petrographic analysis and the fuzzy logic algorithm are in good agreement,
while eliminating the individual bias and the tedious regressions associated with the conventional analysis.

INTRODUCTION:
Small-scale permeability heterogeneities affect reservoir performance, especially during secondary and
tertiary recovery.  These permeability heterogeneities are controlled by variations in petrographic elements
such as porosity types, pore morphologies, mineralogy, texture, and type, amount, and distribution of clay
and cement.   In order to assess the control of each variable on permeability, a comprehensive petrographic
study is essential.  Conventionally, the influence of each petrographic element on permeability is determined
by using core plugs and thin sections, but there is a large difference in the volume of investigation of thin
sections and core plugs.  Permeability varies at every point within most core plugs. Thus, a thin section
prepared from a core plug may not contain the petrographic elements that are representative of the core
plug's permeability at that location.  As a consequence, correlations developed in this analysis may be
misleading. In this paper, we suggest a new simple methodology to improve the quality and quantity of
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petrographic data that influence permeability, by making closely-spaced permeability measurements with a
minipermeameter. We combine these measurements by making properly oriented thin sections from the
surface of the cores on which the permeability was measured.

Once the petrographic data is collected, the second step is analysis.  In order to assess the importance
(ranking) of each petrographic element in controlling permeability,  regression analysis is performed. 
Linear, power, logarithmic, and exponential models are applied to the data, and the model that yields the
best correlation coefficient is chosen.  Ranges of the correlation coefficients to evaluate the model as good,
moderate, or bad are usedCfor example: 0 < R2 < 0.50 (bad); 0.50 < R2 < 0.75  (moderate); 0.75 < R2 <
1.00 (good)Cwhere R2 is the correlation coefficient.  It is important to realize that the conventional ranking
technique compares the best regression models for different petrographic parameters, while ignoring the
type of curve fit.  Hence, the comparison is not entirely equitable.  Once the best fit curves are obtained, the
petrographic elements are ranked in descending order of their correlation coefficients, which also reflects
the magnitude of their effect on permeability.  At this stage, the petrographer, basing the decision on
experience and intuition, supports (or modifies) this ranking of petrographic elements.

In order to reduce this qualitative interpretation and bias introduced by the petrographer, we use a more
quantitative approachCthe fuzzy logic algorithmCto determine the importance (ranking) of each
petrographic elements in controlling permeability.  The fuzzy logic algorithm compares all the petrographic
parameters on the  same basis and hence is superior in that aspect.  Depending on the ranking, the
permeability may be estimated by using only the most important petrographic elements.  In old fields,
where the samples are scarce or not suited for making permeability measurements, this, combined thin
section and fuzzy logic analysis may be used to estimate the permeability.

NEW METHODOLOGY
To sample the whole permeability range for petrographic analysis without destroying the core, our
methodology requires superimposing a fine scale minipermeameter measurement grid on the core.  This
method allows for improved analysis based on the premises that: (1) the area of investigation of
minipermeameter is very small and is comparable to that examined in a thin section, and (2) each thin
section contains multiple permeability points (Figure 1).  The assumption allows us to make better
correlation between petrographic elements and permeability.  The second assumption facilitates collection
of larger set of dataset. The advantage in collecting a large set of data points is that reliable statistical
analysis can be performed and the effects of each petrographic element on permeability can be determined
with better accuracy.  This methodology helps assess the effects of diagenesis and porosity evolution on
permeability more accurately.

According to Goggin et al. (1988), the effective radius and depth of investigation of a minipermeameter
probe tip is four times the internal radius of the probe tip.  However, it was found during the calibration of
our minipermeameter, that the area immediately under and around the probe tip exerts the main control
over permeability (Ali, 1993).  After careful examination, it was concluded that for a probe tip with inner
radius of 0.125 inches (3.125 mm), the area of the thin section to be analyzed should have a diameter of 0.4
inches (10 mm).   Depending on the number of permeability points present on each thin section, the thin
section was divided into that many equal parts and petrographic data were collected for each part
separately (Figure 1).  Using this new method, we collected on the average, data equivalent to 6 to 14  thin
sections from one thin section, which would not have been possible using the conventional core plugs. 
Because of the comparable areas of investigation of both, the thin section and minipermeameter, the
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correlations established between permeability and petrographic elements should be more accurate than the
correlations obtained from analyzing conventional core plugs.

THE FUZZY LOGIC ALGORITHM:
The correlation coefficient analysis, currently used by petrographers, is the simplest modeling technique for
linear systems. This analysis is used to estimate the correlation coefficient for each input parameter
(petrographic element) with respect to the output (permeability), and then rank the coefficients in order of
their significance.

More sophisticated techniques include the Partial Least Squares method and the Principal Component
Analysis (the Karhunen-LoPve transform). These techniques seek to identify the most significant inputs that
contribute to a given output, and then model the system as a linear combination of the significant inputs.
Non-linear systems, on the other hand, require more contemporary modeling techniques like neural
networks, fuzzy systems, genetic algorithms, etc., which try to preserve the system=s non-linear nature.
Although powerful,  non-linear techniques are plagued with erroneous solutions generated by the local
minima in the solution space. These local minima worsen if the input space is large. Therefore, to
efficiently model a non-linear system, it is imperative to reduce the input space by identifying the
significant inputs that contribute to a specific output.

In this study, most of the petrographic attributes examined under the thin section contribute to permeability.
We are also aware that each attribute alters permeability in a unique manner. It is difficult to accurately
quantify this interaction between each of the petrographic parameters and permeability, thus emphasizing
its non-linear nature.

Fuzzy logic is useful in analyzing some of these non-linear problems. In fuzzy logic, an element can
partially belong to more than one set. For example, the temperature in a room can be “warm” or “cold”
depending on a person’s perception. Therefore, the perceived “temperature” can belong to both sets
“warm” and “cold” at the same time. From a petrographic standpoint, we are trying to answer questions
such as: To what extent does a certain petrographic element, such as quartz, affect the permeability of the
sandstone? Due to the non-linear effects of the petrographic elements on permeability, such questions may
demand fuzzy answers.

Facing the dilemma of not knowing the explicit relationship between each petrographic attribute and
permeability, the question of the most significant attributes that contribute to permeability was resolved
using a fuzzy logic algorithm. This data-directed algorithm, developed by Lin (1994), compares the effect
of each individual input parameter, xi (the petrographic measurement), on the single output, y (the
minipermeameter permeability). Briefly, the algorithm achieves this comparison by building fuzzy
membership functions (Φik) for each of the input parameters using:

Φ ik i
ik i

2

( x ) = exp -
( x - x )

b ,       k = 1, 2 , 3 m[ ] L

for m training data points.  b, the normalizing factor, is generally taken as 10% of the length of the input
parameter interval. Each fuzzy membership function defines a fuzzy rule. In our case, the rule is “if xi is
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Φik(xi), then yi is yk”. The fuzzy membership functions are then defuzzified using the centroid
defuzzification rule to plot fuzzy curves (ci) given by:

The summation is done for all the m inputs. The range of each of these fuzzy curves ci(xi) on the ordinate
reflects the effect of each input parameter xi on the output permeability. Details of the fuzzy logic algorithm
are beyond the scope of this paper and the interested reader is referred to Lin (1994).

Prior to generating the fuzzy curves for these petrographic attributes, histograms were plotted for each
attribute after they were normalized based on their representative standard deviations. The histograms
ensure that the data have approximately normal distribution. Heavily skewed data may result in erroneous
results from the fuzzy logic algorithm and one such cautionary example is illustrated in the following
section.

ANALYSIS AND DISCUSSION:     
We used a computer controlled scanning minipermeameter (SMP) to make permeability measurements. 
For details about this minipermeameter see Ali (1993).  Core samples of Upper Queen (Shattuck member,
Permian age) and Santa Rosa  (Triassic age) formations from New Mexico were used in this study.  We
measured the permeability on a square grid (0.5 inches) on the three available Shattuck member cores. 
This generated five vertical permeability profiles along the length of the core (Figure 1). Using this
technique, we measured 5,000 permeability points, which could be directly examined in the thin sections.

Similar measurements were carried out on the Santa Rosa sandstone core, but on a rectangular grid with
horizontal interval of  0.5 inches and vertical interval of 0.2 inches. We based the measurement grids for
the two sandstones on the scale of observed lithologic heterogeneity. Approximately 1,200 permeability
measurements were made. As an example, the permeability distribution in the Santa Rosa sandstone is
shown in Figure 2. We ensured that the samples for petrographic analysis cover the whole range of
permeability spectrum.  In addition to standard petrographic techniques, we applied fluorescent
petrography for the clear delineation of pore geometries and the distribution of micro-pores for improved
data collection.

Upper Queen (Shattuck member) Formation:
We made thirty-eight thin sections from the three available cores  and total of 267 data points were
collected.  Petrographic analysis was conducted to establish the ranking of each  petrographic element in
controlling the permeability.  Sixteen petrographic elements were collected for each permeability point.  A
summary of the correlations and the ranking for top ten petrographic elements is given in Table I.  For
illustration, regression graphs and the fuzzy curves for the most (High) and least (Low) important
petrographic elements are shown in Figures 3 and 4.  The results of the fuzzy logic algorithm are in
excellent agreement with conventional regression analysis (Table I).

c ( x ) =
( x ) · y

( x )i i
ik i k

ik i

Σ
Σ
Φ

Φ
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In the Shattuck member, the most important petrographic elements controlling permeability are the porosity
types.  Among the porosities, the secondary intergranular porosity is the most dominant type and exerts  the
most influence on the permeability (Table I and Figures 3A, 3B, 4A, & 4B).  As the dissolution increases,
the secondary intergranular porosity increases and the interconnection between the pores improves.

Quartz and feldspars are the dominant detrital grains, whereas, anhydrite and dolomite are the dominant
cements (Figures 3 & 4).  Both quartz and feldspar ranked in the middle with respect to controlling the
permeability because as their percentage increases, the percentage of anhydrite and dolomite cement
decreases (Table I).  Detrital clays are present in substantial amounts only in the thinly-laminated, poorly-
sorted silty sandstone zones not thicker than 2 inches.  This is the reason why clay does not affect the
permeability and is close to the bottom of the ranking  (Table I) (Figures 3F & 4F).  Anhydrite is present in
three morphologies: (1) fine crystalline nodules, (2) coarse, pore filling crystals, and (3) large patches of
poikilotopic crystals surrounding several grains.  It is the poikilotopic morphology which may affect the
permeability.  Dolomite is present in two morphologies: (1) micritic dolomite, probably formed by the
dolomitization of the carbonate mud, and (2) large poikilotopic patches. Dolomite and anhydrite  are
distributed in the form of irregular patches (2 - 4 mm in diameter) throughout the reservoir zone.  This
patchy distribution is probably due to the heterogeneous dissolution pattern.  Although, based on the
correlation coefficient and fuzzy logic, dolomite seems to be more important than anhydrite in controlling
permeability, it should be the opposite (Table I) (Figures 3D, 3E, 4D, & 4E).  This inverse ranking of
dolomite and anhydrite is due to a 1.5 ft. thick low porosity and permeability layer of clastic dolomite at the
top of the Shattuck Member which contains as much as  50% dolomite.  In the rest of the reservoir zone,
the amount of dolomite never exceeded 15 %.  Because of this biased distribution, dolomite seems to have
more control over permeability (Table I).

All the petrographic elements were represented as a percentage (dimensionless) whereas, the grain and pore
sizes were estimated in microns. Therefore, the pore and the grain sizes could not be included in the fuzzy
logic analysis because of the incompatibility between units.

Santa Rosa Sandstone:
For the Santa Rosa, we collected 150 data points from twelve thin sections. In this sandstone, quartz is the
most abundant detrital grain and dolomite the most abundant cement.  Kaolinite occurs as authegenic
vermicular pore filling cement.  Rock fragments consist of shale fragments and chert.  The pore system in
the Santa Rosa sandstone consists of the following porosity types: primary intergranular porosity,
secondary microporosity, secondary intergranular porosity, secondary intraconstituent porosity
(intragranular and intracement), moldic porosity, and secondary oversize pores.  Summary of the
correlations and ranking for the top eight petrographic elements influencing permeability are given in Table
II.

Similar to the Shattuck member, the most important petrographic elements are the porosity types, as
determined using both regression and fuzzy logic analysis (Table II). Total porosity and the secondary
intergranular porosity are the most dominant petrographic elements controlling permeability.  The majority
of the primary porosity (reduced primary porosity) consists of pores with polygonal outlines and restricted
interconnections due to quartz overgrowths.  Secondary  intergranular (non-polygonal) pores have better
interconnection due to dissolution.  Microporosity is mainly present among the kaolinite patches.



6

Both kaolinite and dolomite show general decreasing trends as the permeability and total porosity increases.
As kaolinite is mostly present in areas similar in size and shape to detrital grains, it does not affect pore
throats and interconnections between the pores.  Kaolinite is only important in thin low and moderate
permeability zones, where it is present in considerable amounts and ranked in the middle (Table II). For any
given percentage of dolomite there is a wide range of permeability.  This scattering of data is due to the
presence of two dolomite morphologies.  High percentage of dolomite is present in the form of isolated
large rhombic crystals.  This crystal morphology does not effect permeability considerably, and that is why
it ranked at the bottom by both regression and fuzzy logic analysis (Table II).

For the most part, the fuzzy logic and conventional regression analyses are in good agreement, except for
microporosity and quartz.  As mentioned earlier, to generate fuzzy curves the data distribution should be
normal, and skewed data may give erroneous results.  This seems to be the case with microporosity and
quartz. Even though the data was normalized before creating the fuzzy curves, sometimes the data
distribution continues to be skewed.  In case of microporosity, the majority of the data dictated a fuzzy
range of less than 207, but a single point caused the fuzzy range to jump up to 372 (Figure 6E).  This
causes microporosity to be ranked in the third place according to fuzzy logic, whereas, the regression
analysis ranks it at 7 (Figure 5E, Table II).  If we ignore the highest point, the fuzzy range is approximately
207, ranking microporosity in the eight place (Figure 6E, Table II).  In case of quartz, the variation in
permeability increases rapidly when the quartz percentage exceeds 80% (Figure 5C). This results in a
skewed data distribution for quartz. The slightly flat nature of the fuzzy curve is indicative of low influence
of quartz on permeability for quartz percentages below 80%. Sometimes, it is difficult to ascertain the
effect of one element on permeability, because of their correlation with other elements.  Quartz is less
effected by dissolution as compared to less resistant mineral species.  In the Santa Rosa sandstone,
secondary porosity originated mainly by the dissolution of feldspar and dolomitic cement.  Because of this
correlation of quartz with other petrographic elements, the fuzzy logic algorithm was not able to quantify
the effect of quartz on permeability accurately.  An alternative has been proposed by Lin (1994) that
involves the use of fuzzy surfaces to quantify the effects of strongly correlated variables. Therefore, the
distribution and cross-correlation of the data is very important for the correct application of the fuzzy logic
algorithm.

CONCLUSIONS:
1. The new technique of combining minipermeameter and thin sections allows the collection of large

set of petrographic data with fewer thin sections, thus, conserving valuable core material.  With
this new technique, the control of different petrographic elements on permeability can be assessed
accurately.  This methodology also facilitates the understanding of porosity and permeability
evolution.

2. The fuzzy logic algorithm is fast, unbiased, and quantative method for establishing the importance
of each petrographic element in creating the permeability heterogeneity.  The fuzzy logic algorithm
should be used with caution for highly skewed data and strongly cross-correlated data.
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Petrographic elementsPetrographic elements Amoun tAmoun t

(Ranges)(Ranges)

Correlat ion (RCorrelat ion (R22) with) with

per meabilityper meability
(Regression Models)(Regression Models)

Correlat ion (RCorrelat ion (R22) with) with

total total NN
 (Regression Models) (Regression Models)

R a n k ingR a n k ing

based on Rbased on R22  

Ranking basedRanking based

on Fuzzy Logicon Fuzzy Logic
(F u zzy Range)(F u zzy Range)

Secondary  in tergranular  Secondary  in tergranular  NN 0 -  27%0 - 27% 0.75 (Power)0.75 (Power) 0.91 (Linear)0.91 (Linear) 11 1 (158)1 (158)

T otal Secondary T otal Secondary NN 0 -  27%0 - 27% 0.71 (Linear)0.71 (Linear) 0.97 (Linear)0.97 (Linear) 22 2 (150)2 (150)

T otal T otal NN 0 -  27%0 - 27% 0.70 (Power)0.70 (Power) -- 33 3 (148)3 (148)

Pore size (microns)Pore size (microns) 0 - 70 µm0 - 70 µm 0.70 (Exp.)0.70 (Exp.) 0.81 (Linear)0.81 (Linear) -- --

Quar tz  Quar tz  0 -  75%0 - 75% 0.47 (Exp.)0.47 (Exp.) 0.37 (Exp.)0.37 (Exp.) 44 4 (97)4 (97)

FeldsparFeldspar 0 -26 %0 -26 % 0.43 (Exp.)0.43 (Exp.) 0.33 (Linear)0.33 (Linear) 55 5 (90)5 (90)

DolomiteDolomite 0 -  55%0 - 55% -0.36 (Power)-0.36 (Power) -0.26 (Power)-0.26 (Power) 66 7 (45)7 (45)

Grain size (microns)Grain size (microns) 0 -  120 µm0 -  120 µm 0.30 (Exp.)0.30 (Exp.) 0.25 (Linear)0.25 (Linear) -- --

AnhydriteAnhydrite 0 -  40%0 - 40% -0.12 (Exp.)-0.12 (Exp.) -0.07 (Linear)-0.07 (Linear) 77 9 (43)9 (43)

Micro- Micro- NN 0 -  5 .5%0 -  5 .5% -0.10 (Linear)-0.10 (Linear) -0.03 (Linear)-0.03 (Linear) 88 6 (49)6 (49)

ClayClay 0 -  21%0 - 21% -0.06 (Linear)-0.06 (Linear) -0.13 (Exp.)-0.13 (Exp.) 99 8 (44)8 (44)

Rock FragmentsRock Fragments 0 - 9 %0 - 9 % 0.01 (Exp.)0.01 (Exp.) -0.06 (Log.)-0.06 (Log.) 1010 10 (36)10 (36)

Table I: Summary of the petrographic elements and their relationship (R2) with permeability
and  total porosity  for  the Shattuck member.   The ranking  shows the importance of 
petrographic elements in controlling the permeability as determined by the conventional
regression analysis and fuzzy logic.  Elements ranked from 6 to 10 essentially have the
similar control on permeability.

Petrographic elementsPetrographic elements Amoun t  Amoun t  

(Ranges)(Ranges)

Correlation (RCorrelation (R22)  With )  With 

per meabilityper meability

(Regression Models)(Regression Models)

Correla t ion (RCorrela t ion (R22) with ) with 

total  total  NN        

(Regression Models)(Regression Models)

R a n k ingR a n k ing

basedbased

on Ron R22

R a n k ing based on R a n k ing based on 

fuzzy logicfuzzy logic

(Fuzzy Range)(Fuzzy Range)

Tota l  Tota l  NN 2 -30 %2 -30 % 0.89 (Power)0.89 (Power) 11 2 (396)2 (396)

Secondary  in tergranular  Secondary  in tergranular  NN 0 -  22%0 - 22% 0.81 (Power)0.81 (Power) 0.80 (Linear)0.80 (Linear) 22 1 (413)1 (413)

A verage pore size  (mm)A verage pore size  (mm) 20 - 200 µm20 - 200 µm 0.78 (Linear)0.78 (Linear) 0.65 (Linear)0.65 (Linear) -- --

Q u a r t zQ u a r t z 4 0  -  9 8 %4 0  -  9 8 % 0.75 (Exp.)0.75 (Exp.) 0.62 (Linear)0.62 (Linear) 33 8 (183)8 (183)

A verage grain size (mm)A verage grain size (mm) 50 - 200 µm50 - 200 µm 0.74 (Linear)0.74 (Linear) 0.54 (Linear)0.54 (Linear) -- --

Cla y (Kaolinite)Cla y (Kaolinite) 0 -  25%0 - 25% 0.57 (Exp.)0.57 (Exp.) 0.42 (Linear)0.42 (Linear) 44 5 (350)5 (350)

Rock  fragmentsRock  fragments 0 - 8 %0 - 8 % 0. 42 (Log.)0. 42 (Log.) 0. 32 (Log.)0. 32 (Log.) 55 4 (353)4 (353)

Pr imary  Pr imary  NN 0.5 - 15 %0.5 - 15 % 0.32 (Power)0.32 (Power) 0.5 (Power)0.5 (Power) 66 6 (297)6 (297)

Micro-Micro-NN 0.5 - 4%0.5 - 4% 0.27 (Power)0.27 (Power) 0.16 (Linear)0.16 (Linear) 77 3 (372)3 (372)

Cement (Dolomite)Cement (Dolomite) 2 -  40%2 - 40% 0.26 (Exp.)0.26 (Exp.) 0.27 (Exp.)0.27 (Exp.) 88 7 (222)7 (222)

Table II: List of the petrographic elements showing their importance in controlling
permeability in the Santa Rosa Sandstone.
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Figure 1:  (A) Permeability measurement grid.  Five vertical profiles were generated 
by this grid.  Thin section location is also shown. (B) Distribution of permeability 
measurements on the thin section.

Average K

Figure 2:  Permeability distribution in Santa Rosa sandstone core.  Thin individual 
permeability zones can be correlated horizontally along the core.  The numbers on top of each 
permeability track  correspond to the profiles shown in Figure 1. Similar measurements were 
performed on the Shattuck member cores.  
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Figure 3:  Relationships between permeability and different petrographic elements in 
the Shattuck Member.  Note the different regression models applied to the elements.  
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Figure 5: Relationships between permeability and different petrographic elements in 
the Santa Rosa sandstone.  
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Figure 6:  Fuzzy curves for the same petrographic elements shown in Figure 5.  Note 
the flattening of the of the fuzzy curve for quartz (C) reducing its importace.  The fuzzy 
range for microporosity (E) is affected considerably by one data point, which makes it 
appear to be influential in controlling the permeability.  
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