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ABSTRACT
Capillary pressure data have long been used in the interpretation of pore structure. A full
evaluation of the information which could be derived from such data is however limited to
pore-throat size distribution. This work proposes the derivation of rock/flow parameters
from the pore-throat population statistics.

INTRODUCTION
Capillary pressure data are used to assist in the interpretation of pore structure when the
property of interest is the pore-throat size frequency distribution.  Pore-throat sizes are
calculated from Mercury-Injection capillary pressure data, under the assumption that pore-
throats are equivalent to cylindrical capillaries.  The Young-Laplace equation of capillarity is
used to compute the pore-throat radius, r,  from the equilibrium capillary pressure (Pc):

r = 
2γ θcos

Pc
   …………..………………..…(1)

where γ  is the Mercury/Air interfacial tension and θ  is the contact angle measured in
Mercury.

Although capillary pressure curves have long been used to interpret properties of porous
media, a full evaluation of the information which could be derived from such curves is still
lacking1.

In a previous work2, a model was proposed to fit pore-throat distributions. A stochastic
approach to the problem was proposed. The goodness-of-fit was tested by Hypothesis
Testing, and Statistical Inference was used to infer the pore-throat population parameters.
The population parameters of the accepted distributions were then correlated to the lab-
measured petrophysical properties of the rock samples.

In this work the model is extended to cover the case of bimodal pore-throat distributions
and  to  generate  an  effective   distribution  from    individual  capillary   pressure   curves.



THE MODEL
Pore-size  distribution  data  are  computed  from  Mercury  Injection  capillary  pressure
measurements by Equation1, and are usually reported as discrete values of pore radius (in
microns) versus percent pore volume, invaded by Mercury.

A key assumption in the model is that the reported percent is interpreted as the “frequency”
of occurrence of a “discrete random variable” which is the reported pore-throat radius.

Calculation Algorithm
1.  Convert, if necessary, the reported (lab) frequency distribution of the pore radius into a

cumulative relative frequency distribution and express as percentages.
2.  Check the statistical validity of the data by plotting pore-size xi vs. Pr (xi) on a log-

probability paper. The plot should be a straight line.if the pore-size has a log-normal
distribution.

3.  Calculate the mean,

µ =  ln i     Pr  (xi )x
i

n
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∑

1

and variance,   σ 2 =E [( ) ]x − µ 2
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where n is the number of data points.

4.  For each xi, evaluate   zi  =  
1nxi − µ

σ
5.  Calculate  F(zi) from :

                                        F (zi ) = 
1

2
1

2
[ ]( )+ erf

z i

An example of the model fit to laboratory data of pore throat distribution is shown in
Figure1.

Data Analysis
As a test of statistical hypothesis, the normality of the distributions and of their model fits can
be judged by the Chi Square (χ2) test. A graphical procedure can be employed to correlate
porosity and permeability with the population parameters ( µ σ  and  ) of the accepted log-
normally distributed samples.
In a previous work, the porosity of a certain Mid-Eastern carbonate reservoir was found to
be correlatable with the coefficient of variation (σ/µ);

φ
σ
µ

= −10 673. )  ln(  +  29.1 …………..………….(2)



whereas permeability was found correlatable with the population geometric mean radius ( )µ ;

K  =   2.603 µ 3 172. …………………………..……..(3)

In this work, consideration is given to those samples having deviations of the measured data
in the steep part of the capillary pressure curves, i.e. in the region of  small pore-throat sizes.
Such samples exhibit multi-modal distributions of their pore-throats.

For the pore-throat data samples exhibiting a bi-modal distribution character, the two peaks
are treated here as belonging to two discrete random variables X and Y having a joint
distribution density function,   f(x,y).

In such case, the two geometric means are:

 µx =  x
∑ lnx

y
∑  f(x,y) ……………………………..(4)

 µY   =   
x
∑ lny

y
∑  f(x,y)……………………………..(5)

and the variances:

σ2
X  =  

x
∑  (ln -x

y
∑ µx )2  f(x,y)……………….(6)

σ2
Y  =  

x
∑  (lny -

y
∑ µY)2  f(x,y)…………………..(7)

Assuming the random variables X and Y are independent, then their covariance, σXY, is zero

by theory; and hence the variables are uncorrelated.3

An effective geometric mean, µeff , is then defined as :

µeff  =  µ µX Y ……………………………….(8)

When the pore-throat samples with bimodal distributions are analyzed in this way, more
samples pass the normality test and can be included in deriving the correlations for porosity
and permeability. These correlations are shown in Figures 2 and 3.
When Equations 2 and 3 are solved simultaneously, a parametric correlation between K and
φ results with σ  as the parameter:



lnK = 0.297φ - 3.172lnσ - 7.692……………………(9)

Figure 4 is a cross-plot of the resulting relationship.

A small number of the data samples also had measured end-point saturations (Swi and Sor).
The corresponding volume fractions (Vwi and Vor) are found to be functions of the
standard deviation as shown in Figures 5 and 6.

INTERPRETATION
Statistical analysis of the theoretical fit (by a log-normal distribution model) of  pore-throat
distributions in reservoir rock samples taken from various depths of carbonate reservoirs
was carried out. The lab-measured porosity and permeability are found correlatable with the
pore-size population parameters (µ and σ). Porosity is found to be inversely proportional to
the coefficient of variation (σ/µ).
Since the coefficient of variation is a measure of the relative dispersion of the pore-throats
about their mean µ, it is intuitive to suspect porosity to be a function of both σ and
µ. Expressing porosity in the following manner,
Porosity φ = (pore volume/ Bulk volume)
               φ→ µ3 . (total number of pores/Bulk volume).
               φ→ µ3  .  (Number density of pores).
shows that φ must depend on µ which in turn can depend on σ.  Moreover, the number
density of pores is a function of σ.

On the other hand, σ2 = Ε(x-µ)2 =∑ (x-µ)2  f(x)

Hence, 
σ
µ µ

2

2
21= −∑ ( )

x
f(x)  shows that σ/µ is a measure of the range of pore-size relative

to µ.  And since both φ and σ/µ  are dimensionless, then so must be the constants in
Equation 2.

Since permeability is a measure of the ease of flow through the pore-system, it should be
sensitive to pore-throat size rather than to pore-throat-size range.  This is intuitive, since
permeability depends directly on continuity of pore channels but inversely on the wetted
surface area1, i.e. although large pores might constitute a small fraction of the number
density of pores, there volume fraction, however, can be large enough to make them
actually interconnect via large throats, or simply reduce the wetted surface area and, hence,
reduce the pressure energy consumed  by  flowing a fluid through  the  larger pores. i.e. the
impedance to flow caused by the preponderantly many small pores in limestones can be
nullified by the existence of large interconnected pores.  The analogy here to electric current
conductance through resistances in parallel is clear.



From a different angle of view, when σ is held constant, variation in µ  alone will vary φ
only slightly because the number density varies inversely with µ, while K will change
considerably due to its r2 dependence on the pore throat and surface area.  Equation 2 is
therefore qualitatively justified.

CONCLUSION
1.  Lab-reported pore-size distributions can be modelled by a log-normal distribution. The

analysis of the results by the technique of statistical inference gives an expression for
porosity as a function of the coefficient of variation of the pore size, and another for
permeability as a function of the mean size.

2.  Some lob-reported pore-throat distributions are subject to reasonable amount of
sampling errors and/or lab measurement errors.
In fact, several pore size distributions suffer from severe tail end effects; SCAL-reported
distribution ends, especially the lower (i.e. small-size) end, deviate from the
theoretically-expected linear plot of size vs. cumulative relative frequency on a log-
probability paper.  Over the lower end, the final small increment of volume is caused by
mercury invading the small spaces associated with surface roughness of the pore wall.
However, the largest throats are accessible for invasion at the exterior boundary of a
rock sample without being screened by pore-throats. Other researchers ran into similar
deviations of the measured data in the steep part of the capillary pressure curves, i.e. in
the region of small sizes.4,5  This problem can be circumvented by assuming a bi-modal
distribution of pore-throats; one for the micro-pores and a second for the macro-pores.

3. When enough pore-throat size data are available, it should be possible to model relative
permeability and to relate the different kinds of porosity and permeability correlations to
sub-zones and facies of the reservoir.  The judicious use of the resulting relationships
should offer better estimates of the petrophysical properties and for their upscaling.
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Nomenclature
  r pore-throat radius, micron
γ Mercury/Air interfacial tension, mN/m

θ contact angle, degrees
Pc capillary pressure, psi
E refers to the expectation (probability) of an event
ln natural logarithm
Pr probability
σ2 variance
σ standard deviation, micron
µ mean, micron
F(z) standard log normal distribution function



erf error function
i a subscript
n an integer
φ porosity, %
K permeability, mD
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TABLE I
ROCK SAMPLES AND THEIR PORE-SIZE POPULATION PARAMETERS

ROCK SAMPLE DESCRIPTION POPULATION PARAMETERS
DETERMINED

BY MODEL
Well Sample Facies Rock Properties χ2 µ(x) σ (x) σ (x)/µ(x)
No. No. φ  % K,  mD Depth, ft micron micron
W-1 71 M3AU2 27.42 3.2 8448.1 15.517 1.376 1.522 1.10373

71A M3AU2 27.92 6.9 8449.1 12.590 1.523 1.616 1.06308
131 M3AL 27.8 4.7 8458.2 18.941 1.305 1.323 1.01347
201 LM1 17.9 0.76 8473.8 19.229 0.726 1.448 1.99601

201A LM1 22.29 0.02 8475.2 14.940 1.058 1.507 1.42670
261 LM2 26.81 3.9 8483.1 15.407 1.194 1.336 1.11792

261A LM2 26.56 5.05 8484.1 22.993 1.09 1.234 1.13107

W-2 21 - 26.4 4.2 8099.7 18.950 1.366 1.284 0.93891
21A - 30.26 5.8 8100.5 18.216 1.363 1.284 0.94276
111 G1 22.6 630 8430.71 46.545 9.05 3.975 0.43921

111A G1 19.96 14.5 8431.4 18.631 1.787 2.915 1.63457
151 WP1 15.2 0.44 8480 32.085 0.705 1.507 2.12860

151A WP1 12.52 0.44 8480.8 6.109 0.571 2.691 4.73017

W-3 31 M1 30.3 26 7974.1 9.625 1.647 1.522 0.92333
31A M1 29.9 20 7974.1 6.669 2.056 1.751 0.84815
81 M3AL 30.81 6.9 8032.5 18.864 1.3 1.284 0.98408

81A M3AL 31.85 7 8033.3 16.368 1.318 1.297 0.98107
101 27.9 530 9109.8 40.879 10.02 3.857 0.38624

101A 32.9 3250 9110.6 94.474 24.51 1.859 0.07560

W-4 51 M2 28.3 1400 8034.71 23.756 8.654 3.819 0.44061
71 R2 33.57 54 8048.1 18.399 3.17 1.552 0.48971

101 M3AL 28.85 8.35 8080.09 16.557 1.735 1.419 0.81895

W-5 4C G1 26.75 5 8233.9 19.705 1.018 1.419 1.38685
6C P 33.3 18 8239.01 13.763 1.989 1.336 0.67495
15C R/W 27.73 20 8272.31 18.513 1.616 1.433 0.89041
17C - 25 10 9202.1 25.673 1.926 1.733 0.89942
20C - 28.05 39.5 9223.9 11.266 2.357 2.46 1.04305
23C - 29.1 16 9237.01 18.396 2.114 1.896 0.89628

W-6 103C VI 29.85 6.35 8099.1 22.414 0.916 1.363 1.48820
112C M1 19 42 8170.7 10.850 1.812 4.4 2.42440
114C M1 25.3 58 8176.51 17.526 3.821 2.534 0.66563
116C R 15.8 4 8185.7 19.386 2.436 3.034 1.24780
119C R 33.65 70 8189.8 16.266 3.175 2.054 0.64747
123C M1 27.2 33 8197.7 17.208 2.166 1.507 0.69270
125C R 30.1 23 8201.5 15.960 2.315 1.492 0.64418
133C LM 29.2 3 8306.7 25.388 1.133 1.209 1.06492
142C P 22.68 6.4 8452.69 7.784 1.189 2.014 1.69052
146C P/W 22.5 2.1 8477.6 33.971 1.017 1.336 1.31051

W-7 204C IV 22.2 1.1 8338.7 22.252 0.611 1.259 2.06134
210C M2 24.6 10 8418.31 8.479 1.522 2.387 1.56605
212C R 26.9 16 8429.1 16.166 2.209 1.804 0.81715
216C LM 26.55 5.85 8500.69 49.185 1.077 1.197 1.11660

W-8 301C IV 30.25 3.4 7949.41 32.780 0.87 1.22 1.40829
309C M2 5.4 0.02 8033.4 19.899 0.201 2.363 11.76777
316C M3AU2 26.3 5.6 8072 10.180 1.328 1.632 1.23035
319C LM2 32.4 6 8139.9 17.945 1.524 1.22 0.79978
326C P 25.6 10 8290.91 9.184 1.324 1.878 1.42032



Figure 1
 Example of Log-normal Distribution Model Fit to Pore-throat Size Distribution Data
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Figure 2
Porosity vs Coefficient of Variation. ; Accepted Samples
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Figure 3
Permeability vs Mean Radius; Accepted Samples
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Figure 4
Parametric Cross Plot of Permeability vs Porosity; Example 1

(Standard Deviation as a Parameter)
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Figure 5
Initial Water Volume Fraction vs Standard Deviation;  Accepted Samples         
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Figure 6
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