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Abstract

The importance of accurate modeling of heterogeneities for the determination of the
two-phase flow functions is assessed. 1-D and 2-D synthetic and experimental cases
are used to demonstrate the effects of rock heterogeneities on the flow functions. It is
shown that inaccurate modeling of heterogenities can lead to large errors in the
estimated two-phase flow functions even for moderate heterogeneities.

Introduction

Two-phase flow functions, capillary pressure and relative permeabilities, are typically
determined through analyses of data acquired from measurements on some flooding process in
the laboratory. As the flow functions are not directly measurable, they are inferred from the
measured data utilizing some mathematical model of the physical process. This solution
procedure is referred to as inverse modeling.

Frequently, the Johnson, Bossler, Naumann [1] (JBN) method is applied for solving the inverse
problem. In this method, capillary pressure is neglected so that the relative permeability values
can be calculated pointwise (or explicitly) for corresponding saturation values. It is also assumed
that the porous media is homogeneous. However, absolute permeability and porosity often vary
spatially within a core sample. Clearly, this will have an impact on the flow pattern within the
core and also on the measured quantities. This should be accounted for in the interpreted flow
functions.

Over the past ten years, an implicit methodology, in which basically a core flood simulator is
used to history match the measured data, has been developed, tested, and reported in a series of
papers (see, e.g., refs. 2-6). In this approach, the relative permeability and the capillary pressure
functions are estimated simultaneously. Hence, the restrictive assumption regarding zero
capillary pressure is avoided. Although the examples of this methodology so far has been directed
towards cases for which the assumption of a homogeneous media may be adequate, in principle,
no restrictions on the heterogeneity distribution are needed to apply this methodology.

Although few papers address determination of relative permeability and capillary pressure
functions accounting for permeability and porosity heterogeneities, it is well known that the core
plugs may indeed be heterogeneous (see, e.g., Hove et al. [7]). The core material subject to
investigation might be composed of several individual core plugs (forming a so called
“composite” core). The individual cores may differ both in porosity and permeability. It is not
unrealistic to have a permeability contrast of 2:1 (i.e., the permeability of individual cores may
differ by a factor of 2). However, also within a single core sample the permeability and porosity



may vary. For example, small scale heterogeneities such as laminae and cross bedding may
significantly impact the flow due to the large contrast in the magnitude of the permeability of the
laminas. Such a permeability contrast may exceed 10:1 [8]. In addition, the permeability along
and across the laminae at the same position in the core may differ significantly i.e., the
permeability may be anisotropic.

In this paper, we demonstrate the importance of accounting for spatial permeability variation
when estimating two-phase flow functions. We show how the relative permeability and capillary
pressure functions may depart significantly from those of the rock sample whenever a simplified
1D heterogeneity or homogeneity assumptions are erroneously applied. The effects of anisotropy
is not considered here, but are expected to be significant, as even a small anisotropy changes the
local flow pattern. We plan to look into this in future work.

Methodology

In the Appendix we briefly outline the implicit method for determining the relative permeability
and capillary pressure functions. We have in this work extended our capabilities to also handle
situations for which the permeability and porosity can vary spatially. In practice this means that
both the permeability and porosity can change from grid block to grid block in the simulator.
Both 1D and 2D options have been implemented. As the capillary pressure function may vary
with varying absolute permeability (especially for smaller permeabilities) [9], we have attempted
to account for this effect: As an option, the Leverett j-function [9,13] has been implemented. For
such cases, one Leverett j-function, representing the entire sample, will be estimated. The
capillary pressure function will then vary in the grid blocks depending on its permeability and
porosity.

Regardless of the method used for determination of the flow functions, there will generally be
three sources for errors in the estimate [10]: (1) modeling errors; (2) bias errors; and (3) variance
errors. The modeling errors are due to inadequate modeling of the flow process when estimating
the flow functions. In the JBN method the capillary pressure is neglected altogether, and the
media is assumed homogeneous. Although these assumptions may be adequate in some
circumstances, they might lead to serious errors in others. The bias errors are due to utilizing a
functional representation for the flow functions not capable of representing the true (although
unknown) functions. The variance errors will always be present due to uncertainties in the
measurements. When estimating the flow functions, one will generally aim at being at a level
where the discrepancy between measured and simulated data can be described by random errors
[11]. To achieve this, the modeling and bias errors must be much smaller than the variance
errors. The expected value for the objective function (Sum of Square Residuals, SSR, see Eq. A-
1) should then approach the degrees of freedom in the problem whenever the weighting matrix is
chosen as the inverse of the covariance matrix of the measured data [11,12].

In this work, the investigation is directed towards those modeling errors done when estimating the
relative permeabilities and capillary pressure functions on 2D heterogeneous samples, but
assuming the samples to be simplified 1D heterogeneous or homogeneous. In our studies, we
utilize a set of simulated data generated from a simulator with both a 2D and a 1D heterogeneous
absolute permeability distribution. We then attempt estimating the relative permeability and
capillary pressure functions used as input to the simulation (or, the “true” flow functions), from



the simulated data, and assuming a 1D heterogeneous absolute permeability distribution or a
single absolute permeability for the entire sample. In this process, no measurement errors are
added to the simulated data prior to estimating the flow functions; here we limit the investigation
to study the impact of modeling errors on the estimated properties. However, as we know with
which accuracy the different data groups may be measured, we would know which value the SSR
should approach in the case of no modeling errors and the presence of variance errors (provided
that the problem was properly weighted), namely the degrees of freedom in the problem [12].
Consequently, as a rough measure for whether or not the impact from the modeling errors would
be distinguishable from the variance errors, we compare the SSR obtained in these cases (in
which modeling errors are present, but variance errors are not), with the corresponding expected
values in cases with variance errors.

Outline of Cases

The synthetic cases investigated in this work are shown in Figure 1. The core sample is divided
into two different pieces (denoted C1 and C2) with different permeability. The line dividing them
can be altered through an angle α  in the center of the core. If α  is 90o  we will have a composite
core with two individual cores with equal length but with different permeabilities (Figure 1b).
Decreasing this angle towards 0o , passing the angle θ  (the angle where the dividing line goes
from the lower-left corner to the upper-right corner), we will eventually end up with a

horizontally layered core (Figure 1f). With α  in the range [ )0 90o o−  we will have 2D cases,

with α =90o  we will have 1D cases. The permeability contrasts considered between the two
different core pieces for the synthetic cases are 100:50mD (contrast 2:1, for one 1D case only),
50:100mD (contrast 1:2), and 50:500mD (contrast 1:10). In the caption of Figure 1, ε  is the
angle corresponding to one grid block at one of the corners i.e., θ ε−  being the first case where a
continues fluid flow in C1 may be possible.

To demonstrate the importance of accurate modeling of heterogeneities for the determination of
two-phase flow functions, a set of flow functions (see for example solid lines in Figure 2) are
first chosen. For the capillary pressure we use a Leverett j-function for the entire sample, and
scale each individual grid block with its permeability to find the capillary pressure function for
that specific grid block. The flow scenario studied is an oil flood from a core saturated 100%
with water (a “drainage” case). After 1000 min of oil injection, the rate is increased (a so called
”rate-bump”) and the injection of oil proceeds. The total simulation time is 2000 min. The core
and fluid properties are listed in Table 1. Using the above described experimental design,
production and pressure drop data were generated for a series of 1D and 2D heterogeneity cases.
The simulated data were used as input to the estimation procedure. The relative permeability and
capillary pressure (Leverett j-function) were estimated using an average value of the absolute
permeability.

In this work we consider both 1D and 2D heterogeneities. The 1D examples allow us to compare
flow functions based on accurate modeling of 1D heterogeneities (e.g. composite core) with flow
functions based on the assumption that the core sample is homogeneous (with appropriate
average value for the permeability). Flow functions accounting for 2D heterogeneity patterns are
compared to flow functions based on simplified heterogeneity patterns such as a 1D heterogeneity
distribution and a homogeneous core with appropriate averages for the permeability.



Results and Discussion

We present the results focusing on two measures: (i) we study the relative permeability and
capillary pressure (Leverett j-function) compensation for the modeling errors, and (ii). we
investigate and compare the initial SSR of the different cases. The initial SSR is the SSR-value
we obtain for the objective function when the averaged absolute permeability (i.e., the
approximated or homogeneous permeability) and the true flow functions are inputted to the
simulator.

Synthetic 1D Cases

First we consider the permeability contrasts 2:1 and 1:2 in a case with α  equal 90o  (see Figure
1b)). In the 2:1 case, the permeabilities of C1 and C2 are be taken to be 100mD and 50mD,
respectively. In the 1:2 case, the two cores have switched places. Generating the synthetic data
with permeability contrast 2:1 and trying to find estimate of the flow functions with a
homogeneous core sample, the oil relative permeability curve is lowered while the water relative
permeability curve is shifted dramatically upwards, see Figure 2. For the permeability contrast
1:2, we see the opposite effect: The oil relative permeability curve is slightly increased while the
water relative permeability curve is dramatically shifted downwards. The Leverett j- functions
are also changed, especially for the case with permeability contrast 2:1.

Next, we consider the case when the permeability contrast was increased from 1:2 up to 1:10. In
Figure 3 we see that the relative permeability compensation has not particularly increased, while
the Leverett j-function compensation has increased significantly. As will be discussed later, the
small differences in compensation in the relative permeability curves for weak and strong
contrast for α =90o is not seen for other angles.

We investigated cases for which we kept the permeability of C1 equal to 50mD. The permeability
of C2 was varied from 50.1mD up to 500mD. For a series of different permeabilities for core
C2, we calculated the initial SSR value. Figure 4 shows the results; “Delta k” is how much the
permeability of C2 is higher than that of C1. The magnitude of permeability difference needed to
exceed the expected value of SSR, is only between 3 and 4mD in this case. This represents a
permeability difference of approximately 7%.

Experimental 1D Cases

Experiments on composite cores are often done to reduce end effects when interpreting the
measured data. Although the reduced end effects make the JBN method more valid, serious error
can be made by assuming a homogeneous core when it is actually heterogeneous. A 2cc/min
unsteady state water flood experiment was performed at reservoir condition from Swi, and
measurements of pressure drop and oil production were taken. The experiment was done using a
composite core which consisted of four individual cores, each with an individual absolute
permeability. The porosities of the four cores were quite similar. Table 2 shows the
permeabilities and the arrangement of the cores when conducting the experiment.

The composite core was modeled as an 1D heterogeneous core (using the individual
permeabilities) as well as a homogeneous core with a measured average permeability of 560mD



(harmonic average is 548mD, see Table 2). In both cases, the relative permeability and capillary
pressure were estimated simultaneously utilizing the same experimental data.

The results are shown in Figure 5. Figure 5a) shows the comparison of the measured and
simulated values for the first 20 minutes; for later times, only small differences between the two
cases can be observed. As can be seen from Figure 5a), a better match of the breakthrough is
experienced both for the production and for the pressure drop for the 1D heterogeneous
approximation compared to assuming a homogeneous composite core.

More interesting is the estimated relative permeabilities. In Figure 5b) we see that a plateau in the
oil relative permeability curve appears assuming a homogeneous composite core. Using a 1D
heterogeneous core, the plateau vanishes and an accurate (narrow confidence intervals) oil
relative permeability function with no plateau is obtained. No specific changes were seen on the
capillary pressure function. Note that a Leverett j-function was not utilized in this case.

Synthetic 2D Cases

Constructing 2D cases, we first generate data using a selected permeability distribution. We then
approximate this distribution using two approaches. A 1D heterogeneous distributions by
calculating the vertical arithmetic average in each vertical grid column (denoted 1D
heterogeneous cases), and a homogeneous approximation by calculating the harmonic average of
the 1D heterogeneous cases.

Figure 6 shows the results of a 2D case, with α  equal to 30o  and permeability contrasts of 1:2
and 1:10. Modeling the 2D heterogeneity permeability pattern with a 1D heterogeneity
permeability distribution, only minor changes are observed for the flow functions for the
permeability contrast 1:2. Simplifying this pattern with a homogeneous distribution, we get a
major compensation for the water relative permeability curve. Increasing the permeability
contrast to 1:10, we notice that somewhat more compensation for the water relative permeability
curve for the 1D heterogeneous case result. For the homogeneous case, this permeability contrast
will lead to useless results.

Next we consider a rotation of the angle α . We generate simulated data for a 2D permeability
distribution for α =30o , α =θ ε+  and α =θ ε−  (see Figure 1c), 1d) and 1e) respectively). The
flow functions are estimating using a simplified 1D heterogeneous distribution pattern with
permeability contrasts of 1:2 and 1:10. Figure 7 shows the results. Not much compensation in the
flow functions is seen for the 1:2 permeability contrast. For the 1:10 permeability contrast,
however, large compensation results on the estimated flow functions.

Figure 8 shows the influence of using one capillary pressure function instead of a Leverett j-
function when estimating the flow functions from data generated with a 2D heterogeneity
distribution pattern. Generating data with a 1:2 permeability contrast, no apparent difference is
seen between using only one capillary pressure function instead of the Leverett j-function.
Increasing the permeability contrast to 1:10, both the water relative permeability and the Leverett
j-function deviate strongly from the true curves.

The last case considered is when the angle α  is 0o  (i.e., stratified medium). The flow function
compensation is large for the 1:2 permeability contrast (see Figure 9), and gets dramatic when
the permeability contrast is increased to 1:10. One new observation is that the oil relative



permeability is shifted considerably upwards. Also, a very large compensation for the water
relative permeability and the Leverett j-function is seen.

Conclusions

1. Significant modeling error exit for even moderate (1:2) heterogeneities.

2. Strong (1:10) heterogeneity gives useless results if not properly accounted for.

3. Using a simplified 1D homogeneous pattern gives more flow function
compensation than a 1D heterogeneous approximation.

4. Estimation using an average capillary pressure function gives more flow function
compensation than scaling each individual core with a Leverett j-function.

Acknowledgment

This work is a part of an RF - Rogaland Research project within heterogeneous media. The
project is financed by Saga Petroleum as, Oslo, Norway, and the Norwegian Research Council
through our Strategic Institute Program within Advancing System and Parameter Identification,
whose support we gratefully acknowledge.

Nomenclature
r
β Vector of parameters

Ci Core piece, i=1 or 2
r
F Model function

G Constraint matrix

J Objective function

W Weighting matrix
r
Y Vector of data points

Subscript / superscript

con Constraint

m Measured data

s Simulated data

T Transposed
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Appendix: Estimation Procedure
The basic methodology used for estimating the relative permeability and capillary pressure
functions is an implicit approach in which the physical process is represented by an adequate
mathematical model [16]. The relative permeabilities and capillary pressure are saturation
dependent functions and can not be measured directly. These properties can be estimated through
an inverse procedure where simulated data are compared to experimental data. The simulated
data are generated by the mathematical model. It is essential that the flow functions
representation within this model has sufficient degrees of freedom to represent the true although



unknown functions. It has been shown [10] that B-spline functions [14] can provide the
necessary flexibility to represent both the relative permeability and capillary pressure functions.
The coefficients in the B-spline representation are estimated from data from some displacement
experiment, through solution of the non-linear least-squares problem. The basic idea is that the
simulated data should reconcile those actually measured. The non-linear least-squares problem is
defined by

( ) ( )[ ] ( )[ ]J Y F Y Fm s

T

m s

r r r r r r r
β β β= − −W . (A-1)

Here 
r
Ym  and ( )r r

Fs β  are the measured and simulated data, respectively. W is a weighting matrix,

and 
r
β  contains the coefficients or parameters to be estimated. ( )r r

Fs β  is calculated using the

fully implicit, two dimensional black oil, core flood simulator CENDRA [15]. CENDRA is tailor
made for core analyses application, including initial boundary conditions adequate for modeling
flooding, porous plate/micro membrane and centrifuge experiments in 1D and 2D. In the cases
considered in this paper, Pc=0 at the outflow end and a constant injection rate at the inflow end
are utilized. The least-squares problem in equation (A-1) is minimized subjected to the linear

inequality constraints G
r r
β β≥ con

, to ensure monotonic behavior of the flow functions. G  and 
r
β con

are constraint matrix and vector, respectively. The minimization problem is solved by using a
trust-region implementation of the Levenberg-Marquardt optimization algorithm.

Tables and Figures

Table 1: Core and fluid properties used.

Core length [cm] 6
No. blocks in x-direction 60
Core width [cm] 3,25
No. blocks in y-direction (2D) 10
Thickness [cm] 3,25
Absolute permeability [md] 50,100,500
Porosity [%] 30,0
Water viscosity [cP] 0,35
Oil viscosity [cP] 0,85
Oil injection rate [cc/min.] 0,1 and 1,0
Initial Water Saturation [frac.] 1

Table 2: Physical parameters and plug
arrangement of the composite core.

Plug Length Ko(Swi)

arrangement [cm] [mD]

1 6,85     401

2 7,31     498

3 6,80     625

4 7,22     819

a) b) c)

d) e) f)

Figure 1: Illustration of the cases used in this work. a) General case, b) Composite core
example, α =90 o , c) α =30 o , d) α =θ ε+ , e) α =θ ε− , f) α =0 o .
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Figure 2: Flow function compensation for modeling error for the permeability
contrasts 2:1 and 1:2 and α =90 o .
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Figure 3: Flow function compensation for modeling error for the permeability
contrasts 1:2 and 1:10 and α =90 o .
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Figure 4: Initial SSR as a function of permeability difference when C1=50mD,

C2=50+∆k mD and α =90 o ; a) log-log plot, b) magnified lin-lin plot.
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Figure 5: Experimental case; a) measured and predicted data, b) estimated relative
permeability curves using homogeneous and 1D heterogeneous cores
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Figure 6: Flow function compensation for different permeability contrasts and
simplified heterogeneity patterns.
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Figure 7: Flow function compensation for different permeability contrasts and rotation
of the angle α  for 1D heterogeneities.



0.0 0.2 0.4 0.6 0.8 1.0
Water Satuartion

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
P

er
m

ea
bi

lit
y

Contrast 50:100, "alfa"=30

True rel. perm. curves

1D heterogeneous

1D heterogeneous, 1Pc

0.0 0.2 0.4 0.6 0.8 1.0
Water Satuartion

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

R
el

at
iv

e 
P

er
m

ea
bi

lit
y

Contrast 50:100, "alfa"=30

True rel. perm. curves

1D heterogeneous

1D heterogeneous, 1Pc

0.0 0.2 0.4 0.6 0.8 1.0
Water Saturation

0

100

200

300

400

500

Le
ve

re
tt

 j-
fu

nc
tio

n

Contrast 50:100, "alfa"=30

True Leverett j-curve

1D heterogeneous

1D heterogeneous, 1Pc

0.0 0.2 0.4 0.6 0.8 1.0
Water Satuartion

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
P

er
m

ea
bi

lit
y

Contrast 50:500, "alfa"=30

True rel. perm. curves

1D heterogeneous

1D heterogeneous, 1Pc

0.0 0.2 0.4 0.6 0.8 1.0
Water Satuartion

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

R
el

at
iv

e 
P

er
m

ea
bi

lit
y

Contrast 50:500, "alfa"=30

True rel. perm. curves

1D heterogeneous

1D heterogeneous, 1Pc

0.0 0.2 0.4 0.6 0.8 1.0
Water Saturation

0

100

200

300

400

500

Le
ve

re
tt 

j-f
un

ct
io

n

Contrast 50:500, "alfa"=30

True Leverett j-curve

1D heterogeneous

1D heterogeneous, 1Pc

Figure 8: Flow function compensation for different permeability contrasts and the use
of several or one capillary pressure function.
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Figure 9: Flow function compensation for different permeability contrasts when α =0 o .
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