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Abstract

Simultaneous in-situ measurements of resistivity and capillary pressure in a centrifuge
up to speeds of 10000 rpm are reported. The setup can easily be automated for routine
measurements and the electrode design takes advantage of the centrifugal force to maintain
good contact between the sample and the electrodes. For converting the experimentally
measured average saturations and resistivities into state properties, a new perturbation
method has been developed and compared with existing methods. Capillary pressure data
obtained by the centrifuge and microporous-membrane-based method show good agreement
for a synthetic ceramic sample.

Introduction

While measurement of capillary pressure curves of rocks using the centrifuge is fairly
common,1-3 performing resistivity measurements in centrifuges has required the sample
to be removed at every equilibrium step to make external measurements.4 Besides be-
ing inconvenient, this may introduce errors because of saturation reversal in parts of the
sample. Fluid losses resulting from sample handling are also likely. Simultaneous in-situ
measurements of capillary pressure and resistivity have been reported recently.5,6 Durand
and Lenormand5 report data up to a maximum speed of 3000 rpm using electrodes in a
polymer casing on the lateral surface of the core. Because of the shape and arrangement of
the electrodes it is difficult to determine a geometric factor for this setup and the analysis
is further complicated by the presence of saturation gradients.

Raghuraman and Ramakrishnan6 have proposed a design where both the average
resisitivity and saturation are measured over the entire sample volume and the cell constant
is known exactly. The advantages of their four electrode configuration are that it uses the
centrifugal force to maintain good electrode contact with the rock and measures the average
resistance of the sample over the entire length. The setup can be easily automated to make
routine measurements of three samples up to speeds of 10000 rpm.

Unlike the time-consuming porous plate/membrane-based methods, the faster cen-
trifuge technique is an indirect procedure and therefore requires additional data processing
to yield the capillary pressure curve.2,7 In this paper, we describe a new perturbation
method for centrifuge data interpretation. We compare this method with other techniques
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such as the Forbes’ Sαβ method3 and Rajan’s method8 using various model capillary
pressure curves.

The design of the electrodes employed here causes some bending of potential lines near
the sample end faces. A commercial simulator (Maxwell EM 2D Field Simulator, ANSOFT)
was used to generate the current and voltage lines in the sample and determine the error
in resistivity measurements at different speeds resulting from the nonuniform electric field.

For comparative purposes we built a two-ended membrane setup similar to that de-
scribed in the literature.9 This setup gave the capillary pressure curve directly and was
used to validate the data-processing algorithms for the centrifuge.

Experimental

Centrifuge setup

A modified Beckman rock core centrifuge (Model L8M/PHT) with a 10-wire slip
ring (Model EC3848, Litton Poly Scientific) assembly attached to the rotor was used. A
schematic of the four-terminal electrode design for a cylindrical sample is shown in Figure 1.
Details of the setup have been described in an earlier publication.6 All measurements were
made at 1 kHz and 400 mV(RMS) voltage between the current electrodes. Test runs
conducted with standard resistors in the cells over the entire speed range indicated good
continuity and negligible noise.6 Measurements were made on a 1.5 inch long and 0.78 inch
diameter Indiana limestone (19% porosity) and a synthetic ceramic sample (45% porosity)
initially saturated with 1 Ω m brine. Dodecane (99+%, Aldrich Chemicals) was used as
the displacing oil phase.

Membrane-based setup

The membrane-based setup is similar to that reported in literature9 and has a water
side hydrophilic membrane ( 0.1 µm nylon, Sartorius) on one end face and an oil side
hydrophobic membrane ( 0.02 µm polypropylene, Celgard 2402, Hoechst Celanese) on the
other end face of the sample. The lateral surface of the 1.57 inch long and 1.5 inch
diameter cylindrical sample is sealed by a viton sleeve with a pressure of 75 psig . Syringe
pumps (100 DM, ISCO) on either side are used to maintain pressures, and measuring
cylinders with oil-water interfaces are used to measure saturation changes in the rock. The
drainage capillary pressure curve is obtained by starting with a 1 Ω m brine-saturated rock
and slowly raising the capillary pressure in steps to 20 psi . The upper limit is imposed
because of the possibility of breakthrough of oil through the hydrophilic membrane. At
each step the saturation is measured when equilibrium is reached.

Results and Analysis

Data Interpretation: Perturbation method

The capillary pressure (pc ) at a radial distance (r ) from the axis of rotation is the
difference in oil and brine phase pressures at that distance in the sample. Making the usual



assumption that pc = 0 at the outlet face ( r = r2 ; Figure 2), we have

pc(r1) = pc1 =
1
2

∆ρω2(r2
2 − r2

1) (1)

where ∆ρ is the difference in densities of the brine and oil phases and ω is the angular
velocity. The average saturation S̄ over the sample length is then

pc1S̄(pc1) =
1
2

[1 +
√

1− ε]
∫ pc1

0

S(pc) dpc√
1− ε pcpc1

, (2)

where ε = 1 − r2
1/r

2
2 . Width effects have been neglected because the Christiansen num-

ber10 was calculated to be 0.98 for this setup. Various approximate methods have been
proposed in the literature for obtaining the saturation function, S(pc) , from Equation 2,
the earliest of which is that of Hassler and Brunner1 obtained with ε = 0. Most of the
subsequent approximations are either ad hoc3,8 or numerical.11 In contrast, our method
uses a perturbation expansion, the error magnitudes of which are easily quantified, and
provides a fast method to calculate S(pc) .

To solve the integral equation, S̄ is treated as a measured function of pc1 , and S is
written in a perturbation expansion

S(pc1) = S0(pc1) + εS1(pc1) + ε2S2(pc1) + ε3S3(pc1) +O(ε4) . (3)

Taylor series expansions for
√

1− ε and 1/
√

(1− ε pcpc1 ) around ε = 0, when substituted

in Equation 2, gives the following explicit solutions (see Appendix A)

S0(pc1) = S̄(pc1) + pc1
dS̄(pc1)
dpc1

, (4)

S1(pc1) =
1
4

[
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dS̄(pc1)
dpc1

]
− 1

2p2
c1

∫ pc1

0
γS̄(γ) dγ , (5)

S2(pc1) =
1
4
S̄(pc1)− 1

8
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+
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0
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0
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where S0(pc1) is the classical Hassler-Brunner result.1 These solutions involve simple nu-
merical integrations of experimentally measured quantities in addition to the traditional
Hassler-Brunner calculations. In practice, although ε may be as high as 0.75, we find that
terms up to S3 are sufficient since the absolute magnitudes of S1 and S2 decrease rapidly
with increasing order, as shown by our numerical investigations.

Two model capillary pressure curves were used for testing the perturbation solution
using terms up to O(ε3) (Figures 3a and b). The average saturation and its derivative with
respect to the capillary pressure at the top face can be calculated with analytical expressions
for these cases, and hence the difference between the true and predicted saturation is solely
due to the error in the data inversion process. These errors were calculated as a function
of the top face capillary pressure for various values of ε . Width effects were neglected in
both the forward calculations and the inversion process. The capillary pressure curve in
Figure 3a represents a gradual drop in the saturation with capillary pressure, and all three
methods showed errors less than 0.01 units for ε values up to 0.75. The second capillary
pressure curve (Figure 3b) represents a sharp drop in saturation at breakthrough pressure.
Figure 4 plots the errors from data inversion for this case for three different values of ε .
Typically, ε ≤ 0.75 , and the value of 0.91 used here is an extreme test on the validity of these
methods. The perturbation method shows an error spike near the breakthrough pressure
(which increases with ε ) and then monotonically reduces to zero. Rajan’s method8 is
more stable near breakthrough but shows higher errors at lower saturations (high capillary
pressures), leading to higher percentage errors in that region. Forbes’Sαβ method3 shows
instabilities near breakthrough and larger offsets at lower saturations. The advantage of the
perturbation method is that the error can be reduced by going to a higher order scheme.
For an ε value of 0.75 and a capillary pressure of 2.1 psi, the error from the Forbes’
method is −0.12 units . The error from a third-order perturbation solution for this case is
0.037 units , and this can be reduced to 0.025 units by going to a fourth-order scheme.

To further test these methods we generated a discrete data set using the model curve
of Figure 3b with an ε of 0.75 and with no width effects. Figure 5b shows errors from the
three data inversion methods. The perturbation method shows an additional spike near
breakthrough; however the general trends are similar to when we use the continuous data
set (Figure 4b). A second discrete data set was generated by introducing random errors in
speed ( 10 RPM) and the fluid volume produced ( 0.03 cc ) (Figure 5a). The errors from
the perturbation technique do not fall monotonically to zero because of the random errors
in the data set; however it still performs better than the other two methods (Figure 5c).

Experimental data set inversion

In an experimental data set, the average saturation data are obtained at discrete
capillary pressures, and it is necessary to fit a function to these data points to facilitate
differentiation and integration needed to implement any of the three methods described.
Least-squares fitting of the data is common but the use of a single function to describe the
entire data set can introduce errors from excessive smoothing and some of the details of the
data may be lost. We have used a moving window with a three-parameter interpolating



function of the form

log S̄(pc1) =
{ 0, below breakthrough pressure, pb
a1 log pc1

pb
+ a2 log2 pc1

pb
+ a3 log3 pc1

pb
, otherwise.

(8)
The breakthrough pressure is fixed for all the windows. Figures 6a and 9 show the estimated
top face saturations for the Indiana limestone and ceramic samples. The ε value for
our setup is 0.67 and the differences in calculated saturations are less than 1% between
perturbation and Rajan’s methods and 2% between perturbation and Forbes’ methods.

Resistivity curves

At equilibrium, as a result of the saturation gradient, the resistivity of the rock is
also nonuniform and the average resisitivity may be expressed by an equation similar to
Equation 2,

R̄(pc1) =
1

2pc1
[1 +
√

1− ε]
∫ pc1

0

R(pc)√
1− ε pcpc1

dpc . (9)

Writing in terms of resistivity ratios gives

R̄(pc1)
Ro

=
1

2pc1
[1 +
√

1− ε]
∫ pc1

0

R(pc)

Ro
√

1− ε pcpc1
dpc . (10)

Ro is the rock resistivity at 100% saturation and is given by the Archie relation12

R =
1

φmSn
Rw , (11)

for S = 1. Here Rw is the brine resistivity, φ is the rock porosity, m is the cementation
exponent and n is the saturation exponent. At sufficiently low frequencies, the measured
impedance, Z̄ , is equal to the sample resistance and is proportional to the average resistivity
R̄ through

Z̄(pc1) = R̄(pc1)
l

A
, (12)

where l is the length of the rock and A is the cross-sectional area. This gives

R̄(pc1)
Ro

=
Z̄(pc1)
Zo

, (13)

where Zo is the measured impedance at 100% saturation. Any of the methods outlined
earlier for saturation inversion may be applied to Equation 10 to obtain R/Ro from exper-
imentally measured R̄(pc1)/Ro data.

Errors due to nonuniform fields

Because the current electrode does not cover the entire face, there is a nonuniformity
in the electric field. The constant potential lines bend near the insulation and the voltage
measuring electrodes (Figure 7). The error in the impedance measurement is a function of
the fraction of sample face not covered by the current electrode. Because of the resistivity



gradients, the magnitude of the error could be different at different speeds. Simulations
show that the error (defined as the ratio of the difference between the true and measured
resistances to the true resistance) lies in the 6-8% band across the speed range of the
centrifuge. Hence, while the absolute resistance measured at any one speed is lower by
6-8%, the ratio of resistance at any speed to that at 100% saturation measured using the
same assembly is practically error free.

Inverting average resistance data

Figure 6b gives the experimental average resistance ratios at various top face capillary
pressures for the limestone. Using procedures analogous to saturation data processing,
plots of resistivity ratio as a function of capillary pressures have been obtained by the
perturbation, Rajan’s and Forbes’ methods. Figures 8 and 10 are plots of resistivity ratio
versus saturation for the limestone and ceramic samples. Using the Archie relation12 to
fit these data yields a saturation exponent of 2.2 for both the samples. However, some
deviations are observed at saturations below 20-30%.

Comparing with membrane-based data

Because the centrifuge method for capillary pressure measurement is an indirect tech-
nique, it is necessary to validate this using a direct reference method such as the two-ended
membrane-based method. The membrane method is extremely slow, but it directly mea-
sures capillary pressure and saturation. Figure 9 shows that the capillary pressure data from
the centrifuge agrees well with the capillary pressure curves obtained from the membrane
setup and from mercury porosimetry for the ceramic sample. Our membrane setup can
simultaneously measure resistivities also, and experiments are being planned to compare
the resistivity curves obtained by both of these techniques.

Conclusions

Simultaneous measurement of capillary pressure and resistivity in a centrifuge has
been successfully demonstrated. The capillary pressure curve from the centrifuge shows
good agreement with the capillary pressure curve from the membrane setup. A new data
interpretation algorithm has been proposed and compared with existing techniques. Future
plans include total automation of the centrifuge for routine measurements and validation
of the resistivity data.
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Appendix A

Perturbation algorithm

The average saturation in the sample at pc1 is given by

pc1S̄(pc1) =
1
2

[1 +
√

1− ε]
∫ pc1

0

S(γ) dγ√
1− ε γ

pc1

, (A1)

where γ is a dummy variable. Expressing S in a regular perturbation expansion with
gauge functions, εn , gives

S(γ) = S0(γ) + εS1(γ) + ε2S2(γ) + ε3S3(γ) +O(ε4) . (A2)

Using series expansions in ε for
√

1− ε and 1/
√

(1− ε γ
pc1

) and matching O(εn) , we obtain

pc1S̄(pc1) =
∫ pc1

0
S0(γ) dγ , (A3)

0 =
∫ pc1

0

(
γ

2pc1
− 1

4

)
S0(γ) dγ +

∫ pc1

0
S1(γ) dγ , (A4)

0 =
∫ pc1

0

(
3γ2

8p2
c1

− γ

8pc1
− 1

16

)
S0(γ) dγ +

∫ pc1

0

(
γ

2pc1
− 1

4

)
S1(γ) dγ

+
∫ pc1

0
S2(γ) dγ , (A5)

0 =
∫ pc1

0

(
5γ3

16p3
c1

− 3γ2

32p2
c1

− γ

32pc1
− 1

32

)
S0(γ) dγ



+
∫ pc1

0

(
3γ2

8p2
c1

− γ

8pc1
− 1

16

)
S1(γ) dγ

+
∫ pc1

0

(
γ

2pc1
− 1

4

)
S2(γ) dγ +

∫ pc1

0
S3(γ) dγ , (A6)

and so on. We now solve Equation A3 by differentiating it with respect to pc1 to obtain
S0(pc1) (Equation 4). To solve for S1(pc1) , we differentiate Equation A4 with respect to
pc1 . This gives

S1(pc1) = −1
4
S0(pc1) +

1
2

∫ pc1

0

γ

p2
c1

S0(γ) dγ . (A7)

We now substitute for S0(γ) from Equation 4. Terms that contain dS̄
dγ are integrated by

parts and an explicit solution for S1 can be obtained (Equation 5).
Next, Equation A5 is differentiated with respect to pc1 to get an expression for S2(pc1)

in terms of S0 and S1 , which is

S2(pc1) = −1
4
S1(pc1)− 3

16
S0(pc1)+

1
8p2
c1

∫ pc1

0
γ{4S1(γ)−S0(γ)}dγ+

3
4p3
c1

∫ pc1

0
γ2S0(γ) dγ .

(A8)
We again use the relationships for S0(γ) and S1(γ) to obtain∫ pc1

0
γS0(γ) dγ = p2

c1S̄(pc1)−
∫ pc1

0
γS̄(γ) dγ , (A9)

∫ pc1

0
γ2S0(γ) dγ = p3

c1S̄(pc1)− 2
∫ pc1

0
γ2S̄(γ) dγ , (A10)

and∫ pc1

0
γS1(γ) dγ =

1
4

∫ pc1

0
γ

{
S̄(γ)− γ dS̄(γ)

dγ

}
dγ − 1

2

∫ pc1

0

1
γ
dγ

∫ γ

0
βS̄(β) dβ , (A11)

where β is again a dummy variable. The double integral may be simplified through inte-
gration by parts and recognizing that∫ pc1

0

1
γ
dγ

∫ γ

0
βS̄(β) dβ = ln pc1

∫ pc1

0
γS̄(γ) dγ −

∫ pc1

0
γS̄(γ) ln γ dγ , (A12)

since lim
γ→0

ln γ
(∫ γ

0 βS̄(β) dβ
)

= 0. The final result for S2(pc1) is then given by Equation 6.

The analysis may now be continued ad infinitum to higher orders.
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Fig. 4:  Calculated errors for model curve in Fig. 3b using perturbation, Rajan’s and Forbes’ methods.  Errors increase with increasing ε; however, the 
offset from the perturbation method falls to zero at high pressures. ε =0.91 is an extreme case, not observed in practical centrifuges. Perturbation errors can 
be reduced by going to higher orders. Error is defined as the difference between the true  and predicted saturations.
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Fig. 6: (a) Capillary pressure and (b) resistivity ratio curves  for Indiana limestone.  Curves 
obtained by inverting  average experimental data using various algorithms.  

(a) (b)

Fig. 7:  Equipotential contours for the electrode geometry used
 in the setup.  Potential within any electrode is uniform.

Fig. 8:  Resistivity ratio curve for the 
limestone. Archie fit gives a saturation 
exponent of 2.2.

Fig. 9:  Capillary pressure curve for the ceramic sample 
using the perturbation method.  Good agreement is
observed with the curve from the membrane method.

Fig. 10:  Resistivity ratio curve for the ceramic. 
Archie fit gives a saturation exponent of 2.2.
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