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Abstract

Determining petrophysical parameters such as permeability, porosity and lithology
from logs often requires the use of either empirical relationships or some form of
multiple non-linear regression, because of the non-linear nature of the variables
involved. A major problem of the non-linear method lies in the difficulty in choosing
an appropriate mathematical model and matching the sensitivity of the model to the
input variables.

     Recent application of Artificial Neural Network (ANN) techniques, which use
detailed core-log integration, have allowed these difficulties to be overcome. In this
paper the use of a Backpropagation ANN model to provide petrophysical solutions,
validated by detailed core analysis, will be demonstrated in several case studies.

     Permeability determination presents a major problem because of the non-linear
nature and interdependence of the reservoir variables, which constitute it. ANN’s
that are trained using core data are better suited to non-linear applications and
yield better permeability results.

    For lithofacies identification ANN techniques are faster than multivariate log-
based methods because they can handle large amounts of data more efficiently.

     Several case studies taken from Venezuelan reservoirs are considered. Neural
network permeability and porosity transforms are developed and compared to
transforms generated by conventional log-core correlation. Lithofacies are
identified and are used to predict permeability corresponding to each facies. Each
case study makes extensive use of core-log integration.

Introduction

The study area is located in Maracaibo Lake, in the southern part of Bloque VII. The
reservoir  is highly laminated with numerous shale intercalations. The stratigraphical
column and  lithofacies change from well to well  indicating   the presence of high areal
and vertical heterogeneity in the reservoir.
The reservoir contains consolidated sands of the Misoa Formation, classified as C1, C2,



C3 and C4. This work is focused at the C2 and C3 sub-units, with porosity ranges of 11
to 18%, and permeability ranges of 20mD to 500mD .
Despite the wide range of porosity, computation using density log and core
measurements yield sufficiently confident results.    The results obtained by ANN can be
supported with the results obtained using core-log correlation.
Permeability determination has a major uncertainty because of its inherent non-linear
dependence on petrophysical quantities such as porosity, irreducible water saturation,
shale volume, tortuosity, pore   connectivity and other effects due to well condition or
formation damage. For that reason, it is very difficult to achieve a very good core-log
transform for permeability determination using standard regression methods. Lithofacies,
on the other hand, are extremely important in identifying pay zones and also high sanding
potential.  Moreover, lithofacies  can assist in   the determination of   zoned   permeability
and porosity relationships.

Objectives

The main objective of this work is to develop a more precise method of core permeability
extrapolation using well logs as the main component of extrapolation. Other objectives
are porosity and lithofacies extrapolation. The computation technique used is based on
Artificial Neural Networks, employing an error backpropagation algorithm.

Methodology

The genetic method of reservoir characterization divides the reservoir into flow units, to
enable characterization of each flow unit separately.   The method emphasizes  the use  of
lithofacies and facies architecture, to predict its petrophysical  properties. Recent studies,
that relate the genetic approach to the prediction of petrophysical properties, have shown
that the reservoir behavior is more sensitive to the facies architecture than petrophysical
properties. For instance, the presence of high vertical variations   in lithofacies makes it
difficult to match petrophysical   properties from cores and logs .
Lithofacies with distinct depositional , diagenetic and petrophysical properties were
identified first. Due to practical considerations, the available log set was reduced to deep
induction, gamma ray and density log.
 Lithofacies Description: Reservoirs have a random arrangement of pore spaces and
flow channels. For this reason, permeability-porosity transforms are determined,
generally, by statistical methods. But in the reservoir a single lithofacies may have its
own permeability-porosity transforms. Every reservoir has several lithofacies that differ
by the grain size, grain distribution, shale mineral type and cement type and distribution.
So, a high degree of dispersion in permeability-porosity transforms is noted in most
reservoirs due the variation and combination of these variables.   A high dispersion in
porosity and permeability can be considered an indication of the presence of reservoir
heterogeneity. A simple permeability-porosity relationship, which is very often applied to
the whole reservoir, will not necessarily reflect the actual reservoir heterogeneity.



The table shown in the continuation lists the predominant lithofacies in the reservoir
under evaluation.

Table 1.             Facies Description
Facies             Description

S Sandst. cream color, coarse grained, moderately sorted. occasional
conglomeritic laminations.

S3 Sandst.  Cream color, medium size grain, moderately well sorted, composed
of  95%  quartz, feldspathic rock fragments and 2% clay. Planar cross-bedding.

S1 Sandst. Grey color, fine to medium grained, well sorted, laminated, frequent shale
 laminations ,composed of 90% quartz, 5% clay, feldspar fragments. Occasionally
contains long clay casts. Shale laminations are horizontal and parallel.

S31 Sandst. Similar in texture and composition to facies S3, contains identical
Sedimentary structures to S1.

S11 Sandst. Similar in characteristics to S3, but fewer shale laminations.
S2 Sandst. Grey color, fine grained, moderately sorted, occasionally bioturbated.

Composed of 80 to 90 % quartz, 10to 15% clay, feldspar fragments.

Figs. 1A and 1B show photographs of several typical facies described in Table 1.

Neural  Network Computation Description: Artificial Neural Network (ANN) are a
highly parallel information processing system that are non-logarithmic and no-linear.
Artificial Neural Networks are physical cell systems that can acquire, store and use
experimental knowledge. The latest ANN  technology has wide application in formation
evaluation as correlations between well log and core data can be established, without
using linear   regression   transforms that may be inadequate because of the inherent non-
linear nature of the relationships between core and log data.
The neural network consists of layers of interconnected processors called neurons.
Figure 2 shows the  relation  between  entry layers, hidden layers and output layers. The
number of nodes used in the entry, hidden and output layers can vary  depending on the
application. In the example shown in this text, five nodes were chosen for the hidden
layer and produced the best correlation of data. The algorithm demonstrated in Fig 2 is
the feed forward back propagation type, FFBP. This algorithm is based on the fact that
there are no  recurrent links in the network that can provide a feed back, which means the
output of a determined node does not transmit immediately   back  to the same node.
An ANN emulates   the behavior of the human brain in an approximate manner,
executing a learning process according to external stimulus. The formal training of an
ANN is performed by supervised and non-supervised algorithms. The FFBP algorithm is
an example of a supervised learning algorithm, which requires prior knowledge of the
required output.
Interaction between layers are governed by connections which are assigned different



mathematical weights. The net is continually presented with pairs of input data and
required output data during the training process. In this study, the input data used is the
gamma ray log (GR), resistivity (Rt) and density (PHIT) to obtain the required output of
porosity, permeability and lithofacies. These values are taken from core data and are used
to train the network.
At the beginning of the process, weights are assigned randomly. Data in the entry layer
are processed by neurons and the results are fed forward to the hidden layer. Neurons in
the hidden layer perform a similar data processing and transfer results to the output layer.
Data in the output layer are compared to required output data and the error is computed.
The error is fed back to the net by adjusting the weight. The process is in essence an error
minimization controlled by adjusting the weights. The FFBP algorithm uses the method
of the steepest gradient to determine  the optimal configuration of weights in order to
minimize the error. Weights are repeatedly readjusted by  a back propagation process
until the specified tolerance of the error is obtained in the output layer . At this moment,
the ANN is considered to be trained.

Results

Fig 3. Shows the logarithm of permeability plotted against porosity obtained from core
measurements. For the example well shown, correlations are discriminated by facies. The
plot shows linear relationships between the logarithm of permeability and porosity for
lithofacies S3 and S31 and quadratic relationships for facies S2 and S11. This variable
behavior in the correlation of the logarithm of permeability and porosity lend support to
the application of ANN techniques as ANN´s automatically account for the diversified
non-linear nature of the data.

Fig. 4 shows a log of the example well over the depth interval of 14660’ to 14940’.
Gamma ray (GR), deep resistivity (Rt) and total porosity (PHIT) are shown in the first 3
tracks of the log. This  curve set is used as  input values for the ANN. Core
porosity(PHINUC) values are shown in the third track. The KPORFLAG variable in the
second track shows the values that were used in the training of the ANN. The fourth track
shows porosity values from core with a porosity curve obtained by the ANN. The fifth
column shows core permeability values obtained from other  permeability transforms:
KCOREL1: log K = 13.4187 PHIT + 0.3043, for GR<32 API
KCOREL2: log K = 135.3 (PHIT)2 - 2.0163 PHIT -2.0956

Track six shows core permeability values and the permeability curve obtained by using
the ANN. In general, both standard regression and ANN obtained curves compare very
well with core values. However, in intervals where a good match was not obtained, it is
necessary to train the ANN with other additional log values so a better match can be
obtained.

Fig 5. shows a relation between ANN porosity and core porosity, also plotted in track
four in Fig. 4.
Fig 6. Shows a relation between the ANN permeability and core permeability, also



plotted in track five in Fig. 4. The high correlation coefficient indicates that the
permeability  determined by the ANN (NNK) is matched very well to core permeability
(KUCUSE).
Fig 7. Shows the correlation between ANN permeability logarithm versus core porosity,
having a correlation coefficient of 0.9381, which is better than the empirical correlation
KCORL2, which is 0.8155. The coefficient for KCOREL1 was not reported.

The facies classification results are shown in Fig. 8a, where the right most column shows
the facies types as identified by the ANN. These results are in very good agreement with
the description of lithofacies from core. Fig. 8b identifies the curve data in each column,
which are defined as follows:

RECTAR2B = Lithofacies indicator selected by neural network
Lithofacies Rectar2b Color
S 1 white
S1 2 green
S11 3 yellow
S2 4 dark grey
S3 5 dark yellow
S31 6 light grey

GR = Gamma Ray Log
PHIT = Total porosity (from density log)
PHINUC = Core porosity
NNPHI = Neural network porosity
KNUCUSE = Core permeability
NNLK = Neural network permeability

NCFAC12B to NCFAC62B are the accumulated neuron values that correspond to each
facies. These accumulated values are used to plot the lithofacies in one column.

Conclusions

This work is a part of an activity to develop Artificial Neural Network applications in the
core-log correlation area. The synthetic porosity and permeability logs generated  and
lithofacies pattern classification, have shown that Artificial Neural Networks are a
suitable tool for this application. The results that have been obtained in this study have
shown that Artificial Neural Networks can be applied in the extrapolation of locally
known petrophysical values in a particular formation. The next step will involve
petrophysical characterization, including permeability and lithofacies prediction  of the
whole reservoir and will require training of the ANN with all the available data sets of the
field. This will be the subject of a separate study.
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Fig. 1A Photographs of lithofacies S3 and S11 as described in Table 1 above.



                            

Fig. 1B Photographs of lithofacies S2 and S31 as described in Table 1 above.



Fig. 2 shows a schematic of a typical neural network used in petrophysical evaluation. The number of
nodes in the entry, hidden and output layers will vary depending on the application.

Fig. 3 Facies correlation for S3, S31, S2 and S11, in sand units C2 and C3

Correlacción de las facies S3, S31, S2, S11
VLG 3738 "Unidad C2, C3"
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Fig. 5 shows the relationship between neural network porosity and core porosity
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Fig. 6 shows the relationship between neural network permeability and core permeability
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Fig. 7 shows the relationship between neural network permeability logarithm and core porosity
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