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Abstract
This paper describes the design and operation of a new ultrasonic measurement system that
uses a long-duration signal source (chirp) for measuring the propagation and attenuation of
ultrasonic waves in core samples. Compared to standard systems, which utilize short-
duration pulses, the new technique allows better signal-to-noise ratios. Our results show
that the chirp is a practical alternative to conventional pulses for laboratory measurements.

Introduction
Standard systems for measuring ultrasonic parameters in solids depend upon the excitation
and observation of short-duration pulses. This technique is simple to implement and the
received signals are usually easy to interpret, at least in terms of time-of-flight. On the other
hand, because all of the acoustic energy used to make the experiment must be emitted from
the source transducers in just a few microseconds, it is relatively hard to increase the
emitted power beyond applied signals levels of a few hundred volts.
These considerations have led the seismic exploration industry to develop an extensive
technology for measuring time-of-flight and, to a lesser extent, attenuation using a variety of
long-duration signal sources (Geyer, 1989). The best known of these signal types is a
swept-frequency, or chirp, source. Our system is built around that technology.

Experimental Set-up
Fig. 1 shows the major electronic elements and the signal routing for the system we used.
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Fig. 1: Schematic diagram of the measurement system

Chirp source signals are generated by an HP 33120A function generator. This device
provides a fairly wide range of both linear and logarithmic swept-frequency signals of the
form f(t) = A⋅sin[ω(t)⋅t], where ω(t) = At+B for linear sweeps, and ω(t) = A+B⋅log(t+1) for



logarithmic sweeps. After generation, the signal is routed through a module constructed by
New England Research Inc. (NER). It passes to the source transducer through a two-stage
15 kHz RC filter. A 10× sample of the filtered output is routed to the oscilloscope's channel
A for recording; the signal from the receiver transducer is sent directly to the oscilloscope's
channel B.

Signal Processing
In a typical measurement we record between 64×103 and 512×103 samples, at a rate of
30×106 samples per second, for both the driving signal (provided by the generator) and the
received signal. Although these two signals contain a great deal of information about the
elastic response of the sample between the transducers, that information is not in a useful
form. To extract this information, we must process the recorded signals to synthesize the
response of the sample to an impulse signal.
The simplest processing is cross-correlation of the source and receiver traces. If s(t) is the
source signal and r(t) is the received signal, the correlated trace is computed from

( ) ( ) ( )c t r t s d= +∞
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                                                  (1)

This processing computes the impulsive signal we would have recorded if the input pulse
shape had been the autocorrelation of the source chirp signal with itself. We implement this
computation in the Fourier domain using the transform of equation 1:

( ) ( ) ( )c r sω ω ω= ~                                                      (2)
followed by an inverse transformation (Mathews and Walker, 1965). Because of the speed
of the Fast Fourier Transform, this algorithm is actually much faster than a direct (time-
domain) implementation of equation 1.

Results and Discussion
Time Domain Measurements
We performed a suite of measurements with standard sample types (Aluminum and Lucite).
This section reports some of our results. Fig. 2 shows data for an aluminum sample.

Fig. 2: Wave-form data from a one-inch aluminum sample for a compressional p-wave. The lower trace is a
pulsed measurement; the other trace is the result of cross-correlation processing of a 2 ms linear sweep
from 1 kHz to 5 MHz through the same sample.



In comparing pulse-mode traces with cross-correlated traces, it helps to understand that in
pulse-mode measurements we expect to see a sharp first arrival at the beginning of the
pulse. In cross-correlated traces, on the other hand, we expect to see a more-or-less
symmetrical pulse shape centered on the pulse arrival time. Using these results, we
compared time-of-flight measurements from pulse-mode measurements with those of cross-
correlation processing. Table 1 shows the event times picked from cross-correlated linear-
sweep p and s traces with several (trapezoidal) filtering choices as well as results from a
conventional pulse-mode measurement.

Filter Head-to-Head time (µs) Sample data (µs) Speed (m/s)
p s p s p s

wideband 13.71 24.36 17.67 33.61 6417 2745
1-1.5-5-7 MHz 13.73 24.52 17.75 32.57 6318 3155
2-3-8-10 MHz 13.71 24.53 17.72 32.54 6334 3171
pulse-mode 13.47 24.48 17.48 32.57 6334 3133

Table 1: Transit times and velocities for a one-inch aluminum sample. The first three lines of the table show
the arrival times for both head-to-head and sample data and the inferred velocities computed using the
center point of linear sweep data processed by cross-correlation. The last line shows the corresponding
values for conventional pulse-mode measurements.

As we see, the velocity measurements from pulse-mode and the two filtered cases show
good agreement in time-of-flight. The wideband (unfiltered) sweep deviates substantially
more.

Spectral Measurements
In order to investigate power spectral properties of these measurements, we compared data
shot across a one-inch aluminum sample to data for a one-inch Lucite sample. We restricted
our attention to the s-wave type and we only examined pulse-mode data and sweeps with a
duration of 2 ms. After cross-correlating the sweep traces, we extracted a 20 ms long
region centered at each of the resultant pulses and computed the amplitude spectrum.
Fig. 3a shows the amplitude spectra for the aluminum pulses; Fig. 3b shows the logarithm of
the ratio of the spectral amplitudes for aluminum vs. Lucite.

Although we show the ratio for a wide frequency range, it is only well posed over about
400 kHz to 1.4 MHz. We can estimate the Lucite Q-factor, Qluc, from these curves by using
a spectral ratio technique, described in (Toksoz et al., 1979). As an example, we show in
Fig. 3b the result of a least-square fit to a portion of the spectral ratio for a linear sweep.
The fit provides:

( )log10 A A fal luc = × −−0 417 10 0 0086. .

where the frequency f is in Hz. The Q-factor of Lucite, on the other hand, comes from:

( )ln A A f Q Gal luc luc= +π τ



Fig. 3: a) Amplitude spectra for a shear wave arrival across a one-inch aluminum sample using pulse,
linear sweep and logarithmic sweep. b) Logarithm of the ratios of the spectral amplitudes of shear waves
traversing one-inch aluminum and Lucite samples. Each curve shows the ratio for data taken by one of the
three methods examined in this paper: pulse, linear and logarithmic sweep.

where τ = 50×10-6 is the travel-time through Lucite, G is a constant which we can ignore,
and we have assumed that aluminum has an infinite Q-factor. Since log10 x = 0.434 ln x, we
find: Qluc = 160. Repeating for each of the available methods gives: pulse = 183; linear
sweep = 160; log sweep = 157.

All of the results were based on correlation processing. We also tried a few computation
with Aluminum and Lucite using strong fourier decon, but the results showed no obvious
improvement in spectral coverage.

Conclusions
In comparing chirp and conventional pulse measurements, good agreement was observed
both in time-of-flight and amplitude spectra, with consequent similar velocity and
attenuation values. In the amplitude spectra, the chirp measurement shows a substantially
lower high-frequency plateau. We think that this indicates that the amplitude signal-to-noise
ratio for the chirp method is an order of magnitude greater than that for the pulse method.
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