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Abstract

The purpose of this paper is to investigate, by ow simulations in a uniform pore-space geo-
metry, how the co- and countercurrent steady state relative permeabilities depend on the following
parameters: phase saturation, wettability, driving force and viscosity ratio.

The main results are as follows: (i) with few exceptions, relative permeabilities are convex
functions of saturation; (ii) the cocurrent relative permeabilities increase while the countercurrent
ones decrease with the driving force; (iii) with some exceptions, phase 2 relative permeabilities
decrease and phase 1 relative permeabilities increase with the viscosity ratio M = �1=�2; (iv) the
countercurrent relative permeabilities are always less than the cocurrent ones, the di�erence being
partly due to the opposing e�ect of the viscous coupling, and partly to di�erent levels of capillary
forces; (v) the pore-level saturation distribution, and hence the size of the viscous coupling, can be
very di�erent between the cocurrent and the countercurrent cases so that it is in general incorrect
to estimate the full mobility tensor from cocurrent and countercurrent steady state experiments, as
suggested by Bentsen and Manai [1].

Introduction

One-dimensional two-phase ow in porous media is usually assumed to follow the\conventional"
extension of Darcy's law

�ui = �iFi: (1)

where �ui is the Darcy velocity, �i the mobility, and Fi the driving force of phase i, i = 1; 2. The
mobility is usually decomposed as �i � (kkri)=�i where k is the absolute permeability, kri the
\conventional" relative permeability of phase i and �i the viscosity of phase i. The driving force
consists of a pressure gradient term and a gravity term for each phase. The relative permeabilities
are usually assumed to be functions of saturation only [2].

A modi�cation of this ow law includes terms which account for the viscous drag of one uid on
the other [3, 4]

�ui =

2X

j=1

�ijFj : (2)

To estimate the four mobilities that enter this \general" Darcy law it is common to conduct two
types of ow experiments.

Thus Rothman et al. [5, 6, 7] use two sets of numerical simulations, alternatively forcing just
one of the phases: simulations with F1 6= 0, F2 = 0 (or F1 = 0, F2 6= 0) determine �11 and �21 (or
�12 and �22).

Noting that Eq. 2 reduces to Eq. 1 when the driving forces are equal or opposite (F1 = +F2
implies �+i =

P2

j=1 �ij while F1 = �F2 implies ��i =
P2

j=1(2�ij � 1)�ij where �ij is the Kronecker

delta) Bentsen and Manai [1] determine the �+i through equal forcing and the ��i through opposite
forcing steady state experiments.

For the calculation of the full mobility-tensor, both procedures must assume that the �ij are
independent of the ow type. To avoid this assumption Avraam and Payatakes [8] have proposed
a method to estimate the �ij from a single experiment using an inverse method. Inverse problems,
however, are ill-posed.

If the general mobilities �ij are process-independent and have the same value when one or both
phases are forced, the results of Rothman et al. imply that the equal forcing cocurrent and coun-
tercurrent mobilities are roughly independent of the driving force above the percolation threshold.



Experiments with cocurrent steady state ow in a uniform micromodel [9] have shown, however,
that the conventional relative permeabilities may increase by a factor of 5 to 10, when the capillary
number is increased by a factor of 15.

The impact of the viscosity ratio on the cocurrent relative permeabilities have been investigated
earlier by several authors. The numerical (unsteady state) investigations of Goode and Ramakrish-
nan [10] are consistent with earlier experiments [11], showing that the non-wetting phase (phase 2)
relative permeability is a decreasing function, while the wetting phase (phase 1) relative permeability
is a weak function of M = �1=�2. The steady state cocurrent micromodel experiments of Avraam
and Payatakes [9] show that both relative permeabilities decrease with increasing M , although less
for the wetting phase when compared to the non-wetting phase.

The intention of this paper is to study the functionality of both the equal forcing cocurrent
and the opposite forcing countercurrent steady state relative permeabilities in a uniform pore-space
geometry. The functionality of the countercurrent relative permeability with respect to wettability,
applied force and viscosity ratio have not, to our knowledge, been investigated earlier. To study the
countercurrent ow is itself of practical interest, as it reects the ow happening under e.g. gravity
segregation.

Numerical method

We simulate the ow of two immiscible phases on the pore scale by a "�rst principles" two-
dimensional (2D) model. A thermodynamically consistent lattice Boltzmann model of a binary uid
is used. The model simulates the Navier-Stokes equation for the total density and the convection-
di�usion equation for the density-di�erence between the components, see Refs. [12, 13] for details.
Di�erent phase viscosities [14] and a general wettability description through "background chemical
potential"(WP ) [15] are included. We consider a neutrally wet (WP = 0) and a phase-1 wet
(WP = 0:05) system. (The internodal distance �x, the time step �t and the mass unit are set
equal to 1 when referring to variables and parameters of the method). The approach has been
extensively veri�ed [16, 14, 17] and the lattice Boltzmann parameters used here are the same as
in Refs. [15, 17]. In particular, the surface tension parameter � is 0.04 giving a theoretical surface
tension � = 0:04428 [16].

To avoid end-e�ects periodic boundary conditions are used. The ow is driven by a component-
speci�c body force F = n� (gAxA+gBxB), where n is the total density (=2 in the bulk phases), xA
and xB are the fractions of component A and B, while gA and gB are the body-forces on components
A and B.

Numerical experiment setup

The porous medium is a square lattice with 288 nodes in each of two orthogonal direction
identi�ed below as iX and iY . Flow takes place in the space between 64 regularly distributed
identical obstacles (sand grains). Each obstacle is an octagon made by cutting the corners of a
24 � 24 square in such a way that the length of the sides parallel to iX or iY is 12; the length of
the remaining sides is then 6

p
2. See the blank space in Fig. 1 (left). The centers of the octagons

occupy the sites 18(2n + 1)iX + 18(2m + 1)iY , (m;n = 0; : : : ; 7). The diameter of that part of a
"pore" which is parallel to iX or iY is 12.

The driving force on phase i is Fi = nGi. In all the simulations reported in this paper, G1 =
G2 = G(iX + iY ) for cocurrent ow, and G1 = �G2 = G(iX + iY ) for countercurrent ow.

To determine the absolute permeability of this system, it is su�cient to simulate one-phase ow
around one obstacle using periodic boundary conditions. The steady state velocity �eld is shown in
Fig. 1 (left). The absolute permeability (calculated as the averaged x-component of velocity divided
by G and multiplied by the viscosity) is shown on Fig. 1 (right). Deviations from Darcy's law, due
to the increased importance of the inertial terms in the Navier-Stokes equation [18], are seen to be
small: the absolute permeabilities at G = 10�5 and G = 10�3 are respectively � 0:05% higher and
� 3:80% lower than the absolute permeability at G = 10�4.



The initial state of the uid, for all two-phase simulations reported in this paper, is a mixture of
the two phases: at each grid cell uid is randomly generated as either phase 1 or phase 2 (bulk values)
with a probability equal to the desired saturation. Phase separation under ow will determine the
saturation distribution at steady state. The cocurrent ow saturation distributions in the neutrally
wet system at early times are shown in Fig. 2. The plot is a density-plot of the density di�erence
parameter. Bulk phase 1 is white, bulk phase 2 is black and the obstacles are gray. Time step 0
(left) shows the initial state. One can see from the interface curvatures (middle and right �gures)
that the overall ow direction is along iX + iY (up-right on the �gure). The speci�c randomization
at the initial state turns out not to be important for the steady state ow properties. However,
to ensure that di�erent initial conditions do not bias the subsequent calculations, the same initial
condition is used in all simulations having the same phase saturation.

The relative permeabilities presented below are calculated from the steady state Darcy velocities
by the following procedure. The space-averaged velocity components are calculated at every 100 time
step (for phase 1, phase 2, and total) and plotted versus time. Fig. 3 shows the x- and y-component
of the total velocity for the cocurrent neutral wet case. In all cases, steady state is reached at a
time step of approximately 50000. We then use a steady state period of typically 60000 steps to
calculate mean values and standard deviations (x and y components are lumped together). The
resulting standard deviations on the relative permeabilities are illustrated in the plots by error bars
extending one standard deviation above and one below the mean value.

The results presented below show how the cocurrent and the countercurrent ow, both in a
neutrally wet and a phase 1-wet system, vary with the saturation of phase 1 (S), the level of forcing
(G) and the viscosity ratio (M).

The base case, for either cocurrent or countercurrent, is de�ned by S = 0:5, G = 10�4, and
�1 = �2 = 1=3.

Results

E�ect of phase saturation

Neutrally wet: Figure 4 shows steady state cocurrent ow in the neutrally wet system. At
S = 0:25 (left �gure) phase 1 travels as \ganglions" [9] of di�erent sizes through the system. The
surface tension tries to minimize the interface between the phases. This capillary resistance will
make the total ow rate smaller than in the one-phase case. At S = 0:5 (right �gure) the phase
distribution is symmetric as it should be. The two phases travel as ganglions, but these have a
tendency to form clusters long in the direction orthogonal to the ow direction. Due to the larger
interface at S = 0:5, one expect the ow to be more reduced due to capillary resistance, as compared
to S = 0:25. This is shown in the relative permeabilities in Fig. 8 (left). The situation at S = 0:75
is expected to be phase-symmetric to that at S = 0:25 and this point on the relative permeability
curve is taken from the calculations at S = 0:25.

The countercurrent steady state situations are shown in Fig. 5. Due to the opposite drag from
phase 2, phase 1 is almost immobile at S = 0:25 (left �gure). At S = 0:5 (right �gure) most of
phase 1 travels in the iX + iY direction while most of phase 2 travels in the opposite direction. Both
phases are close to establishing connected channels. The capillary resistance is expected to be lower
as compared to the cocurrent case due to the lower interfacial area. However, due to the negative
drag of the other phase, the countercurrent relative permeabilities are lower than the cocurrent ones
at S = 0:5, see Fig. 8 (left). For the countercurrent curves, the point at S = 0:75 is estimated by
symmetry considerations.

The few points calculated for the neutrally wet system indicate that the countercurrent relative
permeabilities are convex functions of saturation. The cocurrent curves seem to have a convex part
at intermediate saturations only.

Phase 1-wet: Figure 6 shows the steady state cocurrent ow in the phase 1-wet system. At
S = 0:25 (left �gure) phase 1 is almost immobile, trapped by the wetting surfaces. At S = 0:5
(middle �gure) both phases are connected. The uid particles may travel in these connected channels,



but there is still motion of the interface through \�nger" evolution and drop ow of phase 2. At
S = 0:75 (right) phase 2 travels as drops.

The countercurrent steady state situations are shown in Fig. 7. Again phase 1 seems to be
immobile at S = 0:25 (left �gure), but the \tail" of these trapped units is now pointing in the
opposite direction when compared to the cocurrent case, due to the opposite viscous drag. At
S = 0:5 (middle �gure) the non-wetting phase 2 has formed a connected network, while the wetting
phase has not. As a consequence, the ow of phase 1 is close to immobile. At S = 0:75 (right �gure)
most of the phase 2 drops/ganglions are immobile.

The relative permeabilities are shown in Fig. 8 (right). All of them are convex functions of
saturation.

E�ect of driving force

Neutrally wet: Figure 9 shows the phase distribution for cocurrent steady state ow in the neut-
rally wet system at various force levels. The G = 10�4 case is shown in Fig. 4 (right). With
G � 10�4 each phase travels as small and large ganglions, where the large ones are long only in
the direction orthogonal to the ow. This kind of transport will be greatly a�ected by the surface
tension. At G = 210�4 the two phases segregate and form more or less stationary channels along the
ow direction. This saturation distribution survives when G is increased to 10�3, but the channels
are now typically thinner. When the phases are distributed as stationary channels along the ow
direction, the surface tension does not signi�cantly a�ect the ow, and a total ow rate similar to
the one-phase situation is expected. This change in the microscopic phase distribution makes the
cocurrent relative permeabilities (at S = 0:5) to jump from a value � 0:2 in the ganglion regime to
a value � 0:5 in the stationary channel regime, see Fig. 13 (left).

Figure 10 shows the phase distribution at countercurrent steady state ow in the neutrally wet
system. The G = 10�4 situation is shown in Fig. 5 (right). At G � 10�4 the size of the ganglions is
relatively large. An increase in the driving force is seen to create smaller phase units and a larger
interfacial area. Consequently, the capillary resistance will increase with increasing G, which is
the opposite of the cocurrent result. Also the viscous coupling increases with increasing interface,
and as a result the countercurrent relative permeabilities decrease somewhat faster than linearly as
functions of the applied force, see Fig. 13 (left).

Note that the countercurrent relative permeabilities are always less than the cocurrent relative
permeabilities. The ratio between the two becomes less with increasing forcing and is only 13.3% at
the highest driving force investigated. Also, the time uctuations (indicated by the error bars) are
larger for the countercurrent ow.

Phase 1-wet: The cocurrent steady state ows in the phase 1-wet system at various levels of
forcing are shown in Fig. 11. The G = 10�4 case is shown in Fig. 6 (middle). At G � 2 10�4 (Fig. 11,
left and middle) the non-wetting phase 2 travels as large ganglions which may form a connected
network. More or less stationary channels along the ow direction are formed at G = 510�4 (right
�gure). The stationary channels become thinner as the driving force is increased further. Thus
the shift from a ganglion regime to a stationary channel regime happens at a higher driving force
for the wetting system as compared to the neutrally wet system. As in the case of the neutrally
wet cocurrent case, the capillary forces are reduced with increasing driving force, and a total ow
rate similar to the 1-phase situation is expected at the high-level forcing. Except for a tendency to
decrease in the interval from G = 510�4 to G = 10�3 for the wetting phase, both cocurrent relative
permeabilities increase almost linearly with the applied force, see Fig. 13 (right). In particular,
there is no jump in the relative permeabilities even though the saturation distribution changes when
passing from G = 210�4 to G = 510�4.

Figure 12 shows the countercurrent steady state ow in the phase 1-wet system at various levels
of forcing. The G = 10�4 case is shown in Fig. 7 (middle). At all levels of forcing the ow regime
is more or less stationary channel ow. For low-level forcing (G � 10�4) these channels are not
aligned with the driving force, but parallel to iX or iY . Some of the non-wetting phase is trapped as



immobile drops. At G � 2 10�4, the non-wetting network aligns with the ow direction and becomes
thinner with an increased interfacial area. Looking at the countercurrent curves in Fig. 13 (right),
the non-wetting relative permeability is seen to decrease as a function of the applied force, except
at G < 10�4. The wetting relative permeability is low (� 0:05) and close to constant.

E�ect of viscosity ratio

We now look at the e�ect of the viscosity ratio, M . In addition to the M = 1 case already
investigated using �1 = �2 = 1=3, cases withM = 0:1 andM = 10 are investigated, using �1 = 1=15
for M = 0:1 and �2 = 1=15 for M = 10.

Neutrally wet: Figure 14 (left) shows the cocurrent steady state ow in the neutrally wet system
with M = 0:1. The corresponding M = 1 case is shown in Fig. 4 (right). The low-viscosity phase 1
(white) has formed a broad channel, and the high-viscosity phase 2 is close to being connected. The
reason for the better ability of phase 1 to produce channels is probably due to the �ngering tendency
of low viscosity phases in general. It is possible to see some phase 1 �ngers on the �gure. Even
though phase 2 has twice the viscosity of the base case, its Darcy velocity is almost 3 times higher
than in the base case. This is partly due to the phase distribution being more aligned along the ow
direction, which causes less capillary resistance, but the main reason is probably the lubrication by
the less-viscous phase 1. The strong viscous coupling between the phases is also the reason why the
phase 1 Darcy velocity is not more than � 1:7 times the phase 2 velocity. This makes the relative
permeability of phase 2 at M = 0:1 larger than unity, see Fig. 17 (left). The relative permeability
atM = 10 is estimated by considerations of symmetry. The calculations indicate that the cocurrent
relative permeabilities are convex functions of M .

The countercurrent steady state ow withM = 0:1 is shown in Fig. 14 (right). The corresponding
M = 1 case is shown in Fig. 7 (right). The phase distribution is not very di�erent from the cocurrent
case, with phase 1 having the best channels. The phase 1 Darcy velocity is � 5:6 times that of phase
2, giving a phase 2 relative permeability � 2 times that of phase 1, see Fig. 17 (left). The relative
permeability at M = 10 is estimated by considerations of symmetry. The calculations indicate that
the countercurrent relative permeabilities are much less inuenced by the viscosity ratio than the
cocurrent ones.

Phase 1-wet: Figure 15 shows the cocurrent steady state ow situations in the phase 1-wet
system having M = 0:1 and M = 10. The corresponding M = 1 case is shown in Fig. 6 (middle).
At M = 0:1 the low-viscosity phase 1 covers the walls, some places as a thin �lm, thus lubricating
the ow of the high-viscosity phase 2. As a result, the relative permeability of phase 2 gets far above
unity (� 1:7), see Fig. 17 (right). At M = 10 the wetting phase is that of high viscosity, providing
a much poorer lubrication to the ow of phase 2. Both relative permeability curves seem to be
convex functions of M , but it is clear that M has the largest e�ect on the non-wetting phase, see
Fig. 17 (right). In particular, the cocurrent non-wetting relative permeability is � 13 times higher
at M = 0:1 as compared to M = 10.

The countercurrent cases at M = 0:1 and M = 10 are shown in Fig. 16. The corresponding
M = 1 case is shown in Fig. 7 (middle). At M = 0:1 the low-viscosity phase 1 will, where stagnant,
lubricate the ow of phase 2. As for the cocurrent case, it is the low-viscosity phase that establishes
the best network, both at M = 0:1 and M = 10. At M = 10 the wetting phase becomes immobile.
As a result both the wetting and the non-wetting countercurrent relative permeabilities decrease as
functions of M .

Discussion

The initial state used (random mixture of the two phases), was chosen to provide roughly history-
independent relative permeabilities. It should be representative for the saturation distribution that
forms when a single-phase gas experiences liquid drop-out, or when a single-phase liquid boils.

Using this approach we �nd that both the cocurrent and the countercurrent relative permeab-
ilities are convex functions of saturation (convex only at intermediate saturations for the neutrally



wet cocurrent case). This convex shape is observed experimentally both in a sand pack [1] and a
micromodel [9] (cocurrent, low capillary numbers), implying that the capillary forces increase with
increasing interfacial area. Figure 8 (right) shows that the wetting cocurrent and countercurrent
relative permeabilities are larger at a given saturation S than their non-wetting counterparts are at
the saturation 1� S. This trend is also observed experimentally [1, 9] and indicates that a certain
amount of non-wetting phase present reduces the ow of the wetting phase more than the equivalent
fraction of wetting phase reduces the non-wetting ow.

We �nd that the cocurrent relative permeabilities increase by a factor of 2 to 2.5 when the applied
force is increased by a factor 15. Thus our results are closer to those found experimentally in the
micromodel [9] than those found earlier by numerical modelling [5, 6, 7]. For unit viscosity ratio,
the micromodel experiments are consistent with our Fig. 13 (right) where the non-wetting relative
permeability increases more than the wetting relative permeability as a function of the applied force.

Our non-wetting phase cocurrent relative permeability decreases strongly and the wetting phase
cocurrent relative permeability increases weakly with increasing M . This is in conict with the mi-
cromodel experiments [9] regarding the wetting phase. In the micromodel experiments, the capillary
number Nc = �u1�1=� is kept constant for the variousM . Using Eq. 1 it follows that Nc = kkriFi=�.
In our investigations the applied force and the surface tension � are kept constant, and the relative
size of the capillary number is shown through kr1 on Fig. 17. Thus, at least some of the observed
increase of kr1 with increasing M is probably due to the increase in Nc.

The most interesting result of the study is that the countercurrent steady state saturation distri-
bution in general is very di�erent from the cocurrent one. This leads to di�erent levels of capillary
inuence and viscous coupling. A consequence of this is that the mobility tensor is not process
independent.

Finally, it should be noted that the 2D simulation presented here does not capture everything.
One important qualitative di�erence between 3D and 2D is that bicontinuous phases and �lm ow
may be excluded in 2D. This study is based on the ow being driven by body-forces (such as gravity).
The results may be di�erent when ow is driven by pressure-forces instead.

Conclusions

On the basis of simulations with our simple model, we have the following conclusions:

� Both the cocurrent and the countercurrent relative permeabilities have more or less the com-
monly observed convex functionality with respect to saturation, see e.g. [1], even though our
porous system is uniform.

� With increasing driving force, the cocurrent phase distribution takes the form of stationary
channels aligned along the ow direction, for each phase. This reduces the capillary forces
and makes the cocurrent relative permeabilities increasing functions of the applied force. For
the countercurrent ow, the applied force has the tendency to mix the phases. This increases
both the capillary forces and the viscous coupling, and makes the countercurrent relative
permeabilities decreasing functions of the applied force.

� The viscosity ratio M = �1=�2 turns out to be important. Both the cocurrent and the
countercurrent phase 2 relative permeabilities are decreasing functions of M . Except for the
countercurrent phase 1-wet case, all phase 1 relative permeabilities are increasing functions of
M .

� The countercurrent relative permeabilities are always less than the cocurrent ones, the di�er-
ence being partly due to the opposing e�ect of the viscous coupling, and partly to di�erent
levels of capillary forces.

� At least at intermediate saturations, the distribution of the phases depends strongly on whether
one has a cocurrent or a countercurrent ow type. Consequently, the capillary forces and the



viscous coupling are di�erent and it seems that the general mobility tensor in Eq. 2 is process-
dependent, and cannot cover both cocurrent and countercurrent ow.
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Figures

Figure 1: Single-phase ow. Steady state velocity �eld (left) and permeability as a function of
forcing level (right).

Figure 2: Two-phase ow in neutrally wet system. Phase distribution at time step 0 (left), time
step 1000 (middle) and time step 2000 (right). G = 10�4, M = 1.



Figure 3: Two-phase ow in neutrally wet system. Average velocities as a function of time.

Figure 4: Steady state cocurrent ow. Neutral wettability. Saturation of phase 1 is 0.25 (left) and
0.5 (right). G = 10�4, M = 1.

Figure 5: Steady state countercurrent ow. Neutral wettability. Saturation of phase 1 is 0.25 (left)
and 0.5 (right). G = 10�4, M = 1.



Figure 6: Steady state cocurrent ow. Phase 1-wet system. Saturation of phase 1 is 0.25 (left), 0.5
(middle) and 0.75 (right). G = 10�4, M = 1.

Figure 7: Steady state countercurrent ow. Phase 1-wet system. Saturation of phase 1 is 0.25 (left),
0.5 (middle) and 0.75 (right). G = 10�4, M = 1.

Figure 8: Steady state cocurrent (coc.) and countercurrent (cou.) relative permeabilities as functions
of phase 1 saturation. Neutral wet (left) and phase 1-wet system (right). The error bars indicate
standard deviations (one above, one below) for each steady state. G = 10�4, M = 1.



Figure 9: Steady state cocurrent ow. Neutral wettability. Level of forcing (G) is 5 10�5 (left),
2 10�4 (middle), and 10�3 (right). S = 0:5, M = 1.

Figure 10: Steady state countercurrent ow. Neutral wettability. Level of forcing (G) is 5 10�5

(left), 2 10�4 (middle), and 10�3 (right). S = 0:5, M = 1.

Figure 11: Steady state cocurrent ow. Phase 1-wet system. Level of forcing (G) is 5 10�5 (left),
2 10�4 (middle), and 5 10�4 (right). S = 0:5, M = 1.



Figure 12: Steady state countercurrent ow. Phase 1-wet system. Level of forcing (G) is 5 10�5

(left), 2 10�4 (middle), and 5 10�4 (right). S = 0:5, M = 1.

Figure 13: Steady state cocurrent (coc.) and countercurrent (cou.) relative permeabilities as func-
tions of forcing level (G). Neutrally wet (left) and phase 1-wet system (right). S = 0:5, M = 1.

Figure 14: Steady state ow in a neutrally wet system. Viscosity ratio (M) is 0.1. cocurrent (left)
and countercurrent (right). G = 10�4, S = 0:5.



Figure 15: Steady state cocurrent ow in a phase 1-wet system. Viscosity ratio (M) is 0.1 (left) and
10 (right). G = 10�4, S = 0:5.

Figure 16: Steady state countercurrent ow in a phase 1-wet system. Viscosity ratio (M) is 0.1
(left) and 10 (right). G = 10�4, S = 0:5.

Figure 17: Steady state cocurrent (coc.) and countercurrent (cou.) relative permeabilities as func-
tions of the viscosity ratio (M). Neutrally wet (left) and phase 1-wet system (right). G = 10�4,
S = 0:5.


	#: SCA-9941


