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Abstract

There are many methods to reduce centrifuge data to obtain capillary pressure
curves. One of the most accurate methods, according to a recent survey
conducted by SCA, is Forbes’ Second Method. A full implementation of this
method requires the manipulation of the results by the analyst to minimize the
error between the experimentally measured production versus rotational speed
and the production versus rotational speed predicted using the calculated
capillary curve. The final curve obtained using this method can therefore be
dependent on the experience and talent of the analyst. Chen and Ruth have
published a technique based on Forbes Alpha Method; their technique
implements an automatic-optimization procedure, rather than an operator
dependent procedure, to minimize the difference between the two production
histories. Forbes’ method contains a parameter that has a fixed value based on
the configuration of the centrifuge; in theory, this value is optimized. The Chen-
Ruth technique treats this parameter as a variable and optimizes it to minimize
the root-mean-square difference between the production histories. The present
paper reports on a study where this idea was extended to Forbes’ Second
Method. Forbes’s Second Method contains three parameters that are
theoretically optimized. By making these parameters variable and optimizing
them simultaneously, it is shown that very good predictions for the SCA Data
Analysis Survey can be obtained.

Introduction

Ever since the publication of the Hassler-Brunner data reduction technique in
1945 for calculating capillary pressures from centrifuge experiments, researchers
have actively sought improved methods. The publication by Forbes (1997)
provides an exhaustive list of the published methods with brief descriptions of
each. That publication also provided examples of data analyses by 13



laboratories using a total of 50 implementations of the various data reduction
techniques. An inspection of these results determined that one of the best
techniques is the “Forbes Second Method” in its original implementation,
including the radial correction method documented in Forbes et al. (1994).

An essential part of any technique is to use the resulting capillary pressure curve
to re-calculate (simulate) the original production data. Forbes Second Method
(F2), in its original implementation, had one drawback: it included a step where
the analyst did “hand-corrections” to the curve to improve simulation of the
experimental results. Such a step is dependent on the talents of the analyst. An
experienced analyst may obtain excellent results; however, an inexperienced
analyst may not.

F2 is based on calculating two different solutions and then combining them.
Mathematically these solutions are:
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In these equations, Sis the saturation, (S) and P, represent the mean saturation

and the pressure at the top of the sample, the variables that make up the original
data set, x is the ratio of the local capillary pressure to the capillary pressure at
the top of the sample, and B is a geometric parameter,
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where r, is the distance from the center of rotation to the top of the sample and
r, is the distance from the center of rotation to the bottom of the sample. S is
the classic Hassler-Brunner solution.

Obviously, both a and b are well-defined physical parameters. However, they
were arrived at by doing an approximate analysis, albeit a very accurate one.



The present work is based on assuming that these two parameters can be
treated as fitting parameters. As such, we will use them to reduce the error
between the simulated data and the experimental data. Furthermore, the
equation used to combine the two solutions was also based on an approximation.
By replacing Bin this equation with a variable g, a three parameter method is

obtained.

The implementation upon which the present work is based utilizes most of the
original formulation described in Forbes (1994), obviously without hand-
correction. A second difference is the method of consistency constraints. In the
present work, a minimum of constraints were imposed: if the saturation points are
out of order (that is, the saturation for a higher capillary pressure is greater than
that for a lower capillary pressure) both values are set to the average value, then
they are separated by a value of 0.0001. Combining the new method with other
constraints, designed to exclude data points that are obviously corrupted, will be
the subject of a future paper.

The Results

To test the new method, the 10 cases analyzed in Forbes (1997) were
considered. The Hassler-Brunner original method was used as a reference
method. F2 was also calculated, without hand-correction but using the new
constraint. The differences between the experimental and simulated data are
plotted. Also, the difference between the resulting curves and the known curves
(the curves used to generate the “experimental” production data) were
calculated.

The attached graphs show the results of the analysis. The two columns of figures
show the differences between predicted cumulative production (the figures
labelled “a”) and the error between the calculated curve and the true curve (the
figures labelled “b”). The squares are for the original Hassler-Brunner method,
the filled-circles are for F2, and the triangles are for the new method (RF). In all
methods, the data has been corrected for radial effects. The bold horizontal lines
(red when in colour) give the error limits based on the errors-of-observation
guoted in the original report.

In all cases, the new method leads to an improved prediction of the experimental
data, albeit sometimes only marginally. In most cases, the original capillary
pressure curve is also better predicted, but not always. This is because the new
method optimizes on production. The model data sets were “corrupted” by
adding in random errors. Errors in the data can drive the resulting curve away
from the original because the method is designed to find the curve that yields the
given data set, not the original curve. The method therefore is seeking a different



curve. Because the true curve is never known in practice, optimizing methods
have no choice but to seek this “other” curve.

Table 1 shows values for the fitting parameters. The values for all three
parameters were constrained to satisfy the ranges allowed by their original
definitions, that is:
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It is observed that these constraints are exercised in Cases 5 and 8 for a, Case 3
for b, and Cases 6,7,9, and 10 for g In the last cases, the new method reduces to
the Chen-Ruth method (1993) because the Beta Solution is not considered
(hence b has been left out of the table for these cases).

Table 1 - A Summary of the Calculated Fitting Parameters
Case | B a forF2 | aforRF b for F2 b for RF | gfor RF

1 0.3253 | 0.0676 0.0700 29.600 15.052 0.2704
2 0.9086 | 0.4348 0.4117 4.600 4.051 0.8400
3 0.6597 |0.1923 0.0936 10.400 2.000 0.1897
4 0.8264 | 0.3182 0.3174 6.286 5.355 0.8756
5 0.4375 | 0.1000 0.0000 20.000 60.783 0.1491
6 0.4969 |0.1202 0.1691 16.640 0.0000
7 0.6735 | 0.2000 0.1723 10.000 0.0000
8 0.2344 | 0.0455 0.0000 44.000 12.872 0.3802
9 0.4375 | 0.1000 0.0006 20.000 0.0000
10 0.5452 | 0.1386 0.0196 14.429 0.0000

Table 2 summarizes the root-mean-squared differences between simulated and
experimental production (V), and between the calculated and the given capillary
pressure curves (C). It is observed that all cases show a reduction in the
difference between experimental and simulated production; often this reduction is
very significant. However, agreement between the real curves and the
experimental curves is not significantly improved except for Case 3. What is
happening is that the curve is simply moving around to accommodate the
differences in production and is not improving the match with the original curve.



Table 2 - A Summary of the Quality of the Fit

Case |[RMS (V) [RMS (V) |RMS(C) |RMS (C)
F2 RF F2 RF
1 0.087 0.023 0.011 0.010
2 0.034 0.030 0.015 0.014
3 0.166 0.015 0.016 0.007
4 0.025 0.016 0.008 0.011
5 0.123 0.049 0.266 0.266
6 0.023 0.015 0.054 0.050
7 0.050 0.017 0.037 0.037
8 0.099 0.053 0.038 0.032
9 0.092 0.062 0.089 0.089
10 | 0.106 0.048 0.044 0.044

Table 3 shows a re-analysis of the data based on the “additional error” defined in
Forbes (1997). By definition additional error indicates the amount by which the
difference between the experimental and true saturations exceeds the error-of-
observation in the experimental mean saturation. The table includes the two
highest plus values and the two lowest minus values of the additional error for
each case. Also included are the number of high values, the number of low
values and the number of values with no additional errors. Forbes (1997)
suggests that the best methods should have additional errors of less than plus or
minus 3-saturation units (0.03) 90% of the time when constraints designed to
account for corrupted data are imposed. From the table it is observed that the 3-
saturation unit criteria is meet 100% of the time for Cases 1,2,3 and 4. Cases 5,
8, 9 and 10 each has 1 point that fails, while Cases 6 and 7 perform poorly.
However, of the 115 points included over the 10 cases, only 12 points fail the
criteria, and 8 of those are accounted for by two cases (6 and 7). Therefore, even
without fully constraining the data, the new method performs very well. This
suggests that with full constraints, the new method should perform extremely
well.

Conclusions
The results given above support the following conclusions:

1. The new method provides accurate results without the necessity of hand-
correction. This means that Forbes’ Second Method can be generalized into a
solution method that is independent of the talents of the analyst.

2. Overall, the new method meets Forbes’ 3-saturation units criteria 90% of the
time.

3. The optimal values of the fitting parameters can deviate significantly from the
theoretical values.



4. Full constraints should be implemented in this solution method should lead to
even better results.

Table 3 - An Analysis of Additional Errors

Case |First+ |Second+ | First- Second - | Highs | Lows | Zeros
1 0.0181 | 0.0053 0.0 0.0 6 0 1
2 0.0169 |0.0134 -0.0106 |-0.0068 |4 5 1
3 0.0 0.0 -0.0047 | -0.0042 0 2 6
4 0.0109 | 0.0064 0.0 0.0 3 0 7
5 0.5809 | 0.0 -0.0051 | -0.0044 1 4 0
6 0.0636 | 0.0312 -0.0983 | -0.0633 6 4 2
7 0.0568 |0.0113 -0.0727 |-0.0624 |4 3 10
8 0.0282 | 0.0 -0.0800 | 0.0 1 1 12
9 0.2291 | 0.0 -0.0135 | -0.0068 1 3 4
10 0.1746 | 0.0 -0.0266 | -0.0019 1 2 21
References

Chen, Z.A. and D.W.Ruth, 1993, “Centrifuge Capillary Pressure Data Reduction
with a Modified Forbes Method,” Journal of Petroleum Science and Engineering,
v.9, pp.303-312.

Forbes, P., 1994, “Simple and Accurate Methods for Converting Centrifuge Data
into Drainage and Imbibition Capillary Pressure Curves,” The Log Analyst, July-
August, pp.31-53.

Forbes, P., 1997, “Centrifuge Data Analysis Techniques: An SCA Survey on the
Calculation of Drainage Capillary Pressure Curves from Centrifuge
Measurements,” Published by the Society of Core Analysts at the International
Symposium, September 8-10, Calgary, Alberta.

Forbes,P., Z.A.Chen and D.W.Ruth, 1994, “Quantitative Analysis of Radial
Effects on Centrifuge Capillary Pressure Curves,” SPE 28182, SPE Fall Meeting,
New Orleans.

Hassler, G.L. and E. Brunner, 1945, “Measurements of Capillary Pressure in
Small Core Samples,” Transactions of AIME, v.160, pp.114-123.

Acknowledgements
The National Science and Engineering Research Council of Canada and IFP
provided support for this work.






Figure 1a Production Error SCA Case 1

Figure 1b Curve Error SCA Case 1
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Figure 2a Production Error SCA Case 2 Figure 2b Curve Error SCA Case 2
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Figure 3a Production Error SCA Case 3 Figure 3b Curve Error SCA Case 3
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Figure 4a Production Error SCA Case 4

Figure 4b Curve Error SCA Case 4
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Figure 5a Production Error SCA Case 5 Figure 5b Curve Error SCA Case 5
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Figure 6a Production Error SCA Case 6 Figure 6b Curve Error SCA Case 6
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Figure 7a Production Error SCA Case 7

Figure 7b Curve Error SCA Case 7
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Figure 8a Production Error SCA Case 8 Figure 8a Curve Error SCA Case 8
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Figure 9a Production Error SCA Case 9 Figure 9b Curve Error SCA Case 9
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Figure 10a Production Error SCA Case 10 Figure 10b Curve Error SCA Case 10
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