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Abstract
Generation of good quality relative permeability data depends on carefully designed programmes of core

flooding, combined with appropriate interpretation of the basic laboratory data. Where capillary pressure is
important, the JBN technique can give misleading results. In this case, simulation methods can be used to
model the influence of capillary pressure. However, experience shows that the conventional fixed capillary
pressure outlet boundary condition may fail to capture the development of the in-situ saturation profiles
satisfactorily.

This paper describes a new approach to coreflood interpretation, which fully utilises in-situ saturation
data and reduces the sensitivity to assumptions about the core boundary conditions. The new method extends
previously published techniques for the interpretation of gravity drainage floods by including viscous and
capillary forces. Relative permeabilities are calculated directly from in-situ saturation and pressure drop data,
without the need to use simulation methods, by applying the Darcy flow equations for the mobile phases at
each position and time in the core. Darcy’s equations are recast to give separate pressure and fractional flow
equations. The fractional flow equation is solved locally, independently of any boundary condition
assumptions, and the pressure equation (written in a global integral form) is solved for the mobility. The
algorithm is applicable to a wide range of water-oil displacements or gas-oil displacements with an immobile
initial water saturation, including multi-rate and constant pressure drop unsteady-state floods, steady-state and
gravity drainage floods.

Synthetic saturation and pressure drop data sets have been generated using a conventional simulator for
a selection of water/oil and gas/oil core floods. The algorithm is applied to the data sets to construct the
underlying relative permeabilities, including a significant fraction of the oil relative permeability tail. The
presence of capillary end effects allows relative permeabilities at some saturations below the Buckley-
Leverett shock front to be calculated in unsteady-state displacements. A range of smoothing methods have
been developed to allow the basic algorithm to be successfully applied to datasets in which noise has been
added to the basic saturation and pressure profiles generated by simulation.

Introduction
Laboratory special core analysis (SCAL) water or gas flooding studies to determine relative

permeabilities need to be performed in such a way that they are representative of reservoir conditions. The
importance of preparation methods to condition the core to an appropriate initial water saturation and
wettability, together with the choice of fluids and flooding rates, are increasingly recognised as key elements
of definitive SCAL programmes.

The results from core floods need to be interpreted to determine relative permeabilities. For example,
the conventional Johnson Bossler and Naumann (JBN) interpretation method [1] uses oil production and
pressure drop data to calculate relative permeabilities, assuming that the influence of capillary pressure on the
displacement can be neglected. However, where capillary pressure is important, (Figure 1), the JBN method
can give misleading results, overestimating the residual oil saturation and giving artificially suppressed
relative permeabilities. The influence of capillary pressure can be reduced by increasing the displacement
rate. However, high flow rates can change the character of the displacement, especially at intermediate-wet
conditions, making results unrepresentative of the reservoir.

In-situ saturation monitoring is a powerful tool for identifying displacements influenced by capillary
pressure. Where capillary pressure is shown to be important more sophisticated interpretation methods are
required, if meaningful relative permeabilities are to be calculated. Current best practice uses simulation



methods to include the influence of capillary pressure. Separately measured static capillary pressure and/or
limited in-situ saturation data are used to constrain regression methods to fit to production and pressure drop
data [2-5]. This approach is an indirect method, using a series of simulations combined with information
about the goodness of fit to the chosen data to adjust the choice of relative permeabilities and capillary
pressure. Where an independent measurement of capillary pressure is made on a second core, it may be
difficult to ensure that it is representative of the original reservoir rate displacement test.  The regression
problem is made difficult by the large number of strongly coupled parameters that characterise the relative
permeabilities and capillary pressure. Experience shows that the results often fail to capture the development
of in-situ saturation data satisfactorily, especially at the core outlet where a fixed saturation (corresponding to
the conventional zero capillary pressure boundary condition) may not be observed.

Good quality in-situ saturation data is often measured during SCAL studies. A number of methods have
been developed to make use of this data, for example in [6] relative permeabilities are calculated for
saturations on the displacement front. An alternative approach to interpreting in-situ data has been applied to
gravity drainage core floods, which allows relative permeabilities to be deduced directly from in-situ
saturation data. This uses the change in saturation profiles with time to calculate the local phase Darcy
velocity, which can then be related directly to relative permeability in regions of the core where capillary
forces are small compared to gravity forces. The method has been successfully applied in a number of studies
of gravity drainage [7-9]. This work builds on these ideas by fully accounting for the influence of viscous and
capillary forces, in addition to gravity forces.

Formulation of basic equations
It is assumed that the core can be treated as a homogeneous one dimensional system. The basic

equations are used to describe water/oil displacements or gas/oil displacements with a uniform immobile
initial water saturation. In this paper the equations are derived in notation appropriate for a vertical water/oil
displacement, but they can easily be translated to horizontal cores (by setting g = 0) or gas/oil displacements.
Distance along the core is measured from the inlet, which is assumed to be at the base of the core.

The starting point for the new interpretation methods is Darcy’s law, where the phase velocities are
expressed according to:
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where wλ  and oλ  are the water and oil phase mobilities respectively, defined by:

ααα µλ /rk= (2)

and the water/oil capillary pressure )( wcw Sp is defined in the standard convention by:

)()()( wwwowcw SpSpSp −= . (3)

Coreflooding sequences are normally designed so that any change in the fluid volumes due to the pressure
drop along the core can be neglected so that the total Darcy velocity )(tU  is known. This allows the Darcy

equation for each phase to be re-cast to separate the pressure and fractional flow terms.

Saturation equation
The pressure independent equation forms an extension of the familiar fractional flow equation:
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This comprises a convective and dispersive term which can be summarised as:
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where the gravity fractional flow )(g
of  is given by

)()(),()(
wowow

g
o SG

U

k
SfUSf += ,  (6)



of  is the conventional viscous dominated fractional flow curve:
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and oG is the gravity counter-current flow velocity function defined by
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In the absence of gravity the gravity fractional flow )(g
of  reduces to the conventional viscous dominated

fractional flow curve of . The capillary dispersion rate function cpwd  is given by
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and corresponds to the counter-current flow term associated with capillary imbibition.

This construction of the oil Darcy velocity equation in terms of )(g
of and cpwd represents a “natural

parameterisation” of the equation with the separate terms having a clear physical meaning. Where gravity can
be neglected compared to viscous and capillary forces, or where flow is at a constant total rate, the evolution
of saturations within the core is controlled explicitly just by these two independent functions. This contrasts
with the conventional approach where three separate functions are considered (two relative permeabilities and
a capillary pressure) even when handling just the saturation data.

Pressure equation
Since pressure data is usually known at a few points, often only at the ends of the core, a more global

form of the pressure equation has to be formulated to make use of this information. One of the difficulties
encountered here is a possible ambiguity in how pressures measured in the inlet and outlet lines are related to
phase pressures in the core at the inlet and outlet face (since the oil and water phase pressures are different by
the capillary pressure).

It is reasonable to assume that the inlet pressure corresponds to the water phase pressure at the inlet face
of the core (subject to gravity head corrections) and that at some point after water breakthrough the outlet
pressure corresponds to the water phase pressure at the outlet face of the core. In this case the pressure
difference can be determined by re-arranging and integrating Equation 1 along the length of the core:
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Prior to water breakthrough the outlet pressure will correspond to the oil phase pressure at the outlet
face of the core. The pressure drop can then be expressed in the following form:
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where )()( tz p is the position of a fixed saturation )( p
wS at time t (known from the saturation data). These

equations may also be expressed in terms of the total mobility and the gravity fractional flow instead of the
phase mobilities.

Solution of equations
The dyrectSCAL (dynamic relative permeability - capillary pressure technique SCAL) algorithms

handle the saturation and pressure data separately. Using information about local phase Darcy velocities and
saturation gradients, the gravity fractional flow curve and capillary dispersion rate function are constructed to
satisfy equation 5. The pressure equation is then solved for the water mobility. Finally, the relative
permeabilities and capillary pressure are deconvoluted from the results of the analysis of the saturation and
pressure equation. This section describes these stages in detail for the algorithms applied to saturation data



defined continuously in space and time. For processing actual data, discrete representations of the algorithms
are needed, with the requirement for appropriate data smoothing and interpolation techniques.

Local phase Darcy velocity
Analysis of equation 5 requires that the local Darcy phase velocities are known. These may be

calculated from the in-situ saturations and the injection history using a material balance approach:
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where the phase volumes per unit cross-sectional area between the core inlet and position z are given by
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and )(tF inj
o is the fractional flow of oil injected at time t.

Direct solution of saturation equation
Direct solution of the saturation equation 5 is made at a series of fixed saturations. For a given saturation

*
wS the corresponding positions for this saturation in the core as a function of time, are evaluated according

to:
** )),(( ww SttzS = (14)

thereby determining the trajectory of the saturation *
wS  in z-t space. Rewriting equation 5 in terms of *z and t

gives the following form:

tz

w
wcpww

g
oo z

S
SkdUSftUtzU

,

**)(*

*

)(),()(),(
∂

∂
+= (15)

Except in the special case of zero total Darcy velocity (considered below), equation 15 can be rearranged to
give:
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Figure 2 shows this process schematically. In the case of no capillary pressure, a line of zero slope will
be found, corresponding to the conventional Buckley-Leverett solution. Where capillary pressure is
important, a line with non-zero slope will be found. It is also worth noting the possibility of not being able to

separate out information about ),( *)( USf w
g

o  and )( *
wcpw Sd in the special case of the saturation corresponding

to one on a stabilised front, where all the data would group around a single point. However, to what extent
this would actually arise in practice is open to question, since data early in the flood may be too early for the
stabilised front to have been established, and in regions at the end of the core influenced by capillary end
effects the stabilised zone may be disrupted.



Repeating this procedure for different values of *
wS  allows the gravity fractional flow and capillary

dispersion function to be constructed. A number of important features of this algorithm are worth noting:

• the most important reservoir engineering function, )(g
of , determining the local sweep efficiency of a water

flood is obtained

• the calculation of )(g
of  and cpwd is purely local, and no assumptions about the inlet and outlet boundary

conditions are required

• )(g
of  and cpwd are constructed explicitly on a pointwise basis, so that no particular functional forms need

to be assumed
• the method can be applied to data irrespective of the type of flooding procedure used, i.e. multi-rate tests,

unsteady-state tests, steady-state tests and gravity drainage (subject to the assumption of a non-zero total
Darcy velocity and either negligible gravity forces or periods of constant total flow rate)

• where a composite core is used, the regression can be applied to each plug separately, allowing )(g
of  and

cpwd  to be evaluated for each plug

• the method can be applied to the dynamic data between established steady-state conditions (the special
case of analysis of the steady-state data is discussed below)

• the constructional nature of the algorithm demonstrates that an independent measurement of capillary
pressure is not required to interpret insitu saturation data in the presence of capillary end effects.

Pure counter-current flow and gravity dominated solution
In the case of pure counter-current flow the total Darcy velocity is zero and the formulation of the basic

saturation equation is made in terms of oG and cpwd  according to:
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The gravity dominated ( )( oww gkU ρρλ −<< ) version of the saturation equation also takes this form.
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evaluated. Where the solution is gravity dominated and the additional condition that the oil mobility is low

compared to the water mobility holds ( wo λλ << ), )( *
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allowing the oil relative permeability to be calculated directly.

Steady-state tests
If only the steady-state conditions are to be analysed, there is no need to calculate local phase Darcy

velocities, since these are known from the imposed fractional flow. Equation 16 simplifies to:
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Provided capillary forces are sufficiently important for a given saturation to be present in the core on a
number of equilibrium states this equation may be analysed in the standard way, subject to the normal
assumptions that gravity forces are negligible or the total flowrate is constant.



Multi-rate tests where gravity is not negligible

In the case where gravity forces are not negligible, and ),( *)( USf w
g

o has been deduced from data

corresponding to periods of constant flow at a number of total Darcy velocities iU , it is possible to deduce
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wo Sf and )( *

wo SG according to the following analysis:
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Then by plotting ),( *)(
iw

g
o USf against iUk / and performing a linear regression allows )( *
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to be evaluated. For saturations where this is possible, this determines three independent functions and so
allows the relative permeabilities and capillary pressure gradient to be determined without using pressure
drop data (avoiding the complications of boundary condition effects). This result is possible because the
different flow rates are combined with a known local gravitational pressure gradient.

Gravity and generally varying flow rates
In the case of a generally varying flowrate it is possible to write the saturation equation in the following

form:
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 space may be available to make this generally applicable.

Direct solution of pressure equation
Solution of the pressure equation (equation 10) requires the water mobility to be determined. In practice,

pressure drop data is often quite noisy, especially when floods are conducted at reservoir conditions. The
solution algorithm is based on a least squares regression on the pressure equation, by varying a parameterised
version of the water mobility.

Note that while the fractional flow curve constructed by the methods of the previous section is well
defined, the data for the pressure equation and its interpretation is more uncertain. However, this ambiguity
will only feed through into the total mobility function and the full capillary pressure curve, which in many
cases will make less impact on predictions of reservoir performance.

Construction of relative permeability and capillary pressure
The oil mobility, and hence relative permeabilities, are determined by solving equation 6. The capillary

pressure gradient can then be calculated using the known form of cpwd  and the mobility functions. The

capillary pressure curve is then evaluated to within a constant by integration. The absolute level of the

capillary pressure would be known if it proves possible to determine )( )( p
wcw Sp  from the pressure equation

regression if equation 11 is used. Alternatively, the saturation at the core outlet after breakthrough would
correspond to zero capillary pressure if the conventional capillary pressure boundary condition is assumed.

If phase selective pressure transducers were utilised [10], that allowed a direct dynamic measurement of
capillary pressure to be made, it would be possible to construct the relative permeabilities using this

information together with )(g
of  and cpwd  deduced from the saturation data. In this scenario the total pressure

drop data would no longer be required, completely avoiding the ambiguities associated with this
measurement.



Smoothing of saturation data
The dyrectSCAL algorithms described in this paper are based on continuum saturation and pressure

data. In practice saturation and pressure data is only measured at discrete spatial positions and times, and the
data is subject to statistical noise and local fluctuations associated with small scale heterogeneity. Therefore,
the algorithms have been recast in a discrete form, and appropriate smoothing techniques developed. Noisy
saturation data is first smoothed before being interpreted using the discrete form of the dyrectSCAL
algorithms. A number of smoothing methods have been developed, ranging from parametric non-linear least
squares fitting to non-parametric constrained spline methods. These methods have been applied to the
saturation-position, saturation-time, position-time and saturation-position-time spaces (S-z, S-t, z-t and S-z-t).
The smoothing methods used in each case depend on the type of data being analysed and the nature of the
displacement process.

Validation of methods
A conventional black-oil reservoir simulator was used to generate synthetic saturation and pressure drop

data. Synthetic data has been generated for a number of different test cases including: gas-oil gravity
drainage, unsteady-state water-oil, steady-state water-oil and constant pressure drop gas-oil displacements. A
gas-oil gravity drainage displacement and an unsteady-state water-oil displacement are described here. In
both these cases a conventional zero capillary pressure boundary condition was applied at the outlet.

A total of 40 equally spaced saturation monitoring positions were assumed along the core and saturation
measurements were taken at time intervals of 5 minutes or greater. Uncorrelated Gaussian random noise was
then added to the synthetic saturation data to represent the effect of measurement error and small-scale
heterogeneity.

Unsteady-state water-oil test
In the unsteady-state test, water was injected in a horizontal 10 cm core at a constant rate of 8 ml hr-1.

The synthetic saturation profiles with noise are illustrated in Figure 1. This test was interpreted using the
general form of the dyrectSCAL method which uses both the saturation and pressure drop data. As a basic
validation of the dyrectSCAL approach, the synthetic saturation data before the addition of noise was
processed. The interpreted fractional flow curve is shown in Figures 3 and 4, where it can be seen that the
entire fractional flow curve is successfully reconstructed for saturations above about 0.5 (corresponding to a
water fractional flow of about 0.3). The error bars show the 90% confidence interval obtained from the linear
regression. It should be noted that each data point on the dyrectSCAL fractional flow and dispersion rate
functions is individually calculated, entirely independently of the other points and the assumptions made
about the core inlet and outlet boundary conditions. The presence of a capillary end effect allows fractional
flows significantly below the Buckley-Leverett shock front to be calculated. In contrast, the JBN
interpretation of the data shows unrepresentatively early water breakthrough and too high a residual oil
saturation. The capillary dispersion rate is also successfully reconstructed for saturations above about 0.5
(Figure 5). For the data set including noise, the interpreted oil gravity fractional flow and capillary dispersion
rate functions are compared with the originals in Figures 6 to 8. Figure 6 shows a good match to the shock
front saturation and that some data are obtained at lower saturations. This figure also shows that the method
becomes less reliable on steep sections of the saturation profiles (in this case at saturations less than 0.55).
The log-plot of the fractional flow (Figure 7) shows that low values of the fractional flow can still be
recovered.

The relative permeability functions are shown in Figures 9 and 10. Since the water relative permeability
was modelled by a parametric form, a smooth curve is obtained. The oil relative permeability is evaluated as a
function of the fractional flow and so breaks down at the same point as the fractional flow curve. The water-
oil capillary pressure function is shown in Figure 11. The saturation at the outlet has been used to define the
zero point on the capillary pressure function. The oil recovery factor is plotted against pore volumes of water
injected in Figure 12. There is a very good match for up to two PV injected and a good match above this.
This should be contrasted with the basic core flood recovery factor which is lower due to the hold up of oil in



the core by capillary pressure. If a bump flood were incorporated in the test sequence, additional data at the
high water saturations would be available for processing, which would be expected to further improve the
match to the underlying recovery curve (based on the viscous dominated fractional flow curve). In contrast,
the JBN method fails to match the recovery factor in this case.

Gas-oil gravity drainage test
In the gravity drainage test, gas was injected at the top of the vertically oriented 60 cm core at a constant

rate of 2 ml hr-1. The synthetic saturation profiles with noise are illustrated in Figure 13. This test was
interpreted using the gravity dominated form of the dyrectSCAL method which does not use the pressure drop
data.

Application of the gravity drainage version of the dyrectSCAL algorithm allows the oil relative
permeability to be recovered, even from data in regions of the core strongly influenced by capillary pressure.
As a basic validation of the dyrectSCAL approach, the synthetic saturation data before the addition of noise
was processed. The interpreted oil gravity counter-current flow velocity is compared with the original
function in Figure 14.  This figure shows that the function is successfully reconstructed for saturations above
about 0.3.  For the data set including noise, the interpreted capillary dispersion rate function is compared with
the original function in Figure 15. The corresponding oil relative permeability curves are shown in Figures 16
and 17. At low saturations the gas mobility will become low enough for the displacement to cease to be
gravity dominated and the gravity dominated solution will no longer be valid. In this case, the accuracy of the
results reduces (with increasing saturation gradient) before this point is reached.

A good match is obtained to the capillary pressure function (Figure 18). This is because only the ratio of
the counter-current flow velocity to the dispersion rate is required in the evaluation of the capillary pressure
function and it can be shown that this ratio is generally less sensitive to the accuracy of the linear regression
for gravity dominated displacements.

Conclusions
1. The equations for coreflood simulation have been reformulated in terms of a “natural parameterisation”

of the multi-phase functions each with a clear physical meaning.
2. The evolution of the insitu saturations is determined by only two independent functions, the fractional

flow and capillary dispersion function.
3. The in-situ saturation data can be processed using an explicit constructional method (dyrectSCAL) to

determine the fractional flow and capillary dispersion function, independently of boundary condition
assumptions.

4. The explicit construction demonstrates that independent measurements of capillary pressure are not
required to interpret core flood data.

5. The pressure equation is solved using local Darcy velocity data without the need for conventional
simulation.

6. The dyrectSCAL methodology is applicable to a wide range of core flooding methods including
unsteady-state, steady-state and gravity drainage floods.

7. The methods have been successfully applied to synthetic data sets, which include noise, by the
development of a range of smoothing techniques.
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Nomenclature
cpwd capillary dispersion rate [s-1]

of  viscous dominated fractional flow

[dimensionless]
)(g

of  gravity fractional flow [dimensionless]

)(tF inj
o injected fractional flow of oil

[dimensionless]
 g gravity constant [ms-2]

oG gravity flow function [m-1s-1]

 k permeability [m2]

αrk relative permeability of phase α
[dimensionless]

 L length of core [m]

cwp water/oil capillary pressure [Pa]

αp  pressure of phase α  [Pa]

),( tzSα  saturation of phase α  [dimensionless]
*
wS  fixed water saturation used for

dyrectSCAL algorithm [dimensionless]
)( p

wS  fixed water saturation used for pre-

breakthrough pressure equation
[dimensionless]

 t time [s]
U(t) total Darcy velocity [m s-1]

αU  Darcy velocity of phase α  [m s-1]

Vo(z,t) oil volume per unit area in core
between inlet and position z [m]

)(* tz distance from inlet of *
wS  at time t [m]

)()( tz p distance from core inlet of )( p
wS  at time

t [m]
 z distance from core inlet [m]
Greek:

p∆ core pressure drop [Pa]

)(zφ porosity [dimensionless]

αλ mobility of phase α  [Pa-1s-1]

αµ viscosity of phase α  [Pa s]

ρα density of phase α [kg m-3]
ζ integration variable [m]
Subscripts:
α phase label
 g gas phase
 o oil phase
 w water phase
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Figure 1 Synthetic water saturations for unsteady
state test

Figure 2 Schematic of direct solution of saturation
equations using the dyrectSCAL method
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Figure 3 Comparison of interpreted water fractional
flow for unsteady state test without noise

Figure 4 Comparison of interpreted oil fractional
flow for unsteady state test without noise
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Figure 5 Interpreted capillary dispersion rate for
unsteady state test without noise

Figure 6 Interpreted water fractional flow  for
unsteady state test
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Figure 7 Interpreted oil fractional flow  for unsteady
state test

Figure 8 Interpreted capillary dispersion rate for
unsteady state test
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Figure 9 Interpreted oil and water relative
permeabilities for unsteady state test

Figure 10 Interpreted oil and water relative
permeabilities for unsteady state test
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Figure 11 Interpreted water-oil capillary pressure for
unsteady state test

Figure 12 Comparison of interpreted oil recovery
factor
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Figure 13 Synthetic gas saturations for gravity
drainage test

Figure 14 Interpreted counter-current flow velocity
for gravity drainage test without noise
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Figure 15 Interpreted capillary dispersion rate for
gravity drainage test

Figure 16 Interpreted oil relative permeability for
gravity drainage test
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Figure 17 Interpreted oil relative permeability for
gravity drainage test

Figure 18 Interpreted gas-oil capillary pressure for
gravity drainage test




