SCA 2001-15

ANCHORING METHODOLOGIES FOR PORE-SCALE
NETWORK MODELS: APPLICATION TO RELATIVE
PERMEABILITY AND CAPILLARY PRESSURE
PREDICTION

Steven R McDougall, John Cruickshank, and Ken S Sorbie
Department of Petroleum Engineering
Heriot-Watt University
Edinburgh, EH14 4AS

ABSTRACT
The work described in this paper attempts to extend the predictive capability of pore-scale
network models by using real experimental data as lithological "anchors". The

development of such an anchored model capable of relative permeability and capillary
pressure prediction would clearly be of great utility, providing a cheap and flexible tool for
interpolating and extrapolating sparse and expensive laboratory data sets. Moreover, once
the model had been anchored to reservoir rock samples, a wide range of sensitivities could
be examined without recourse to additional experiments.

In the context of gas reservoir engineering, a preliminary methodology — utilising
mercury injection capillary pressure (MICP) data — has been developed that could permit
both the matching of existing experimental gas/oil relative permeability curves and the
quantitative prediction of additional data sets. Two approaches have been considered. The
first involves matching capillary pressure data from MICP experiments to extract pore size
distribution and pore volume scaling information. These parameters are then used to
predict the relative permeability curves directly. A second approach is to simply match the
gas-oil relative permeability curves using a highly constrained bond model. Capillary
pressure prediction is then treated as an inverse problem. The constrained set of adjustable
parameters in the macropore network model comprises: coordination number (z), pore size
distribution exponent (n), pore volume exponent (n) and pore conductivity exponent (I ) —
1.e. only 4 simple parameters.

Results demonstrate that this basic four-parameter model is sufficient to reproduce the vast
majority of experimental drainage relative permeability curves examined. Only one
network simulation per sample is required to match both the wetting and non-wetting
curves and each parameter obtained from the matching process lies within a narrow range
of possible values. These highly encouraging results suggest that further over-
parameterisation of the model is unnecessary in the context of drainage processes.
However, we also show that anchoring network models to mercury intrusion data alone is
insufficient for predicting relative permeabilities a priori — there is an interdependence of
parameters and, consequently, an infinite set of parameter combinations will produce
almost indistinguishable capillary pressure curves. Therefore, future analysis of MICP data
should be performed in conjunction with the analysis of some other independent
experiment — an experiment which gives one additional datum that forms the “missing
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link” between anchoring and prediction. Some ideas relating to how this may best be
achieved will be presented 1n this paper.

1. INTRODUCTION

Pore-scale network models offer an alternative approach towards the calculation of single
and multiphase flow properties by explicitly incorporating interconnected pore elements
into a three-dimensional framework. Network models were first suggested by Fatt in 1956
and his early model has been developed considerably over the intervening years (Chatzis &
Dullien, 1977, 1985; Heiba et al, 1982; Mohanty & Salter, 1982, 1983; Jerauld & Salter,
1990; Blunt & King, 1990; McDougall & Sorbie, 1993, 1995, 1997; Oren et al, 1994,
1998). Indeed, the most recent models have extended the concept still further to the study
of three-phase flow phenomena (Fenwick & Blunt, 1995; Mani & Mohanty, 1997;
McDougall & Mackay, 1998) and even NMR responses in porous media (Damion et al,
2000).

Although a great deal of literature exists that corresponds to generic network modelling,
relatively few attempts have been made to predict petrophysical parameters quantitatively.
In fact, there has been a paucity of network studies incorporating any experimental data at
all. The first attempt at fitting experimental relative permeability curves appears to have
been undertaken by Lin and Slattery (1982), who had reasonable success in matching the
capillary pressure and relative permeability data of Leverett (1939) with their 10-parameter
model. Heiba et al (1992) used a Bethe lattice to approximate the porous medium and
produced a good fit to the data of Talash (1976). Other studies include those of Bryant and
Blunt (1992), Rajaram et al (1997) (in the context of unconsolidated soils) and QOren et al
(1998). The latter authors extended the approach of Bryant and Blunt by incorporating
models of sedimentation and diagenesis into the network reconstruction algorithm (in
addition to the Bryant and Blunt compaction model). Capillary pressure and relative
permeability predictions were presented and compared to two data sets. Whilst capillary
pressures were well-matched in both cases, the large degree of scatter in the experimental
core-flood data make relative permeability comparisons rather difficult. The mixed-wet
system highlighted an interesting phenomenon: residual oil saturation initially increased
with the fraction of oil-wet pores in the network, but decreased again once this fraction had
exceeded some critical threshold. These findings successfully reproduce the earlier
predictions of McDougall & Sorbie (1992), Dixit et al (1996), McDougall et al (1997) and
Blunt (1997).

In this paper, the aim is to take a more direct modelling approach towards increasing the
predictive capability of network models. Experimental data are used as lithological
"anchors" and a preliminary methodology — utilising mercury injection capillary pressure
(MICP) data — has been developed that could permit both the matching of existing
experimental gas/oil relative permeability curves and the quantitative prediction of
additional data sets. It is shown that, whilst experimental relative permeabilities can be
matched relatively easily, anchoring network models to capillary pressure data is a
necessary but not sufficient condition for accurate relative permeability prediction %2 the
procedure is non-unique. The analysis presented here further demonstrates that if only one
of the (n,n,z) parameters can be found by some other means, then this would provide the
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“missing link” between data fitting and data prediction. Some ideas relating to how this
may best be achieved are presented.

2. NETWORK MODELLING PRELIMINARIES

2.1. Introduction

Before describing the precise details of the anchoring procedure, it will be beneficial to
briefly discuss some basic concepts relating to bond percolation models. In network
models, the porous medium is modelled using a system of interconnected capillary
elements, which generally configure to some known lattice topology. Although these
network structures are somewhat idealised, the capillary radii are assigned randomly from
a realistic pore size distribution in an effort to partially reconstruct the actual porous
medium under investigation. Here, the porous medium is initially modelled using a three-
dimensional cubic network of what will be referred to as pore elements. The various
volume and conductivity functions associated with each element will be discussed later.

2.2. Basic Model

For the studies described here, the model used consisted of a three dimensional cubic
network of capillary elements and elements can be randomly removed to simulate less
well-connected systems. Using a Poiseuille-like flow law and invoking conservation of
mass at each node leads to a set of linear pressure equations that can be solved to
determine the nodal pressures. These, in turn, are used to calculate the elemental flows in
each of the pore elements throughout the network

The simulation of capillary-dominated drainage processes is carried out using an invasion
percolation model with hydraulic trapping of the wetting phase. More precise details of the
model used in this work can be found elsewhere (eg. McDougall & Sorbie, 1997).

2.3. Inverse Capillary Pressure Plots

One of the main objectives of this study is to anchor network models using relatively
cheap, easily-acquired experimental data and then to attempt to predict more complex
petrophysical parameters such as relative permeabilities ¥4 mercury intrusion curves would
be ideal candidates for this purpose. Although mercury/vacuum capillary pressure curves
are often fairly structureless, their corresponding R-plots (R=2Scosq/P.) have been shown
to be more structured (McDougall and Sorbie, 1994). Consequently, R-Plots from the 8
reservoir samples were constructed from the intrusion data and the general form of these
curves is shown schematically in Figure 1 — the initial steep decline is caused by the
limited accessibility experienced by the mercury at the start of intrusion and the plateau
region corresponds to the formation of a sample-spanning mercury cluster. Perhaps the
most interesting aspect of these plots, however, is a clearly discernible point of inflection
(kink) following the plateau regime. The structure of the R-Plots implies that most samples
must contain an extremely large number of very small pores and/or a large volume fraction
made up of pore corners and surface roughness. Hence, it may be supposed that the
corresponding pore size distribution function to be used in the network flow analogue
should also contain a large number of small pores (and that pore corner effects should also
be included). The mercury injection simulator was consequently modified to incorporate
cusped pore shapes (explicit corner porosity) and a Log-Uniform pore size distribution
(~1/r). None of the simulated R-plots exhibited the inflection point characteristic of
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laboratory data, however, implying that neither continuous intrusion into pore edges nor a
unimodal distribution function are sufficient in themselves to reproduce the kink effect. A
modified approach must be considered and will be developed presently.

3. ANCHORING PROCEDURE

3.1. Fully Accessible Assumption

The simplest approach for simulating experimental mercury intrusion curves, in the R-plot
form in particular, is the “3Rs” approach. This consists of building a network of pore
elements, with each element assigned a radius, a volume and a conductance. The volume
and conductance are considered to be proportional to the radius raised to some power, as
follows:

Py
v(r) VI (1)
glr)ur!

where P, is the capillary pressure, v(7) is the pore volume, and g(7) the pore conductivity as
a function of capillary entry radius, ». One extra constraint is added to the base case, which
is that the pore radius distribution, f{7), also has a power law dependence:

flr)pr )

where n <0 (n > 0) implies that there is a larger density of smaller (larger) pores and n =0
implies a uniform distribution. Attention will initially be restricted to a unimodal
distribution function. In reality, however, it is quite conceivable that rock samples will
contain different families of pores; this possibility will be investigated later, when a
bimodal model will be considered.

In investigating the base model, it is instructive to start with models that have perfect
accessibility. The accessibility of a given pore network is given by 4(r) and measures the
ratio of the number of invaded pores to the number that would have been invaded if each
pore had a direct connection to the inlet. Thus, perfect accessibility is represented
by A(r) © 1. The effects of restricted accessibility will be considered later. The shape of the
R-plot in the perfectly accessible case can be calculated analytically. Firstly, if 7., and 7qx
are the minimum and maximum radii of the distribution, we have;

n+n+l _ _ n+n+l 0

Sue(r)= 3 V) () ar zgrﬁw—rnwi 3)

max min 4]

Of course, the R-plot will always be monotonic with a negative gradient, but the second
derivative will give more information about the shape of the curve;

n+n+l n+n+l
dr (rmax - rmin ) N - (n +n)

s, (p+n+l)

Hg

(4)
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dzr _- (n +n)-(l’r£na;"+]) - Frg?;nﬂ)) r-(2ﬂ+2n+l) (5)
ds;, (h+n+1)

Since 7 is always positive, we can see that if the sum of the exponents is positive, the slope
of the curve will become steeper (more negative) with increasing », which is defined as
concave (a negative second derivative). Likewise, if the sum of the exponents is negative,
the slope of the curve will decrease with r, giving a convex R-plot with a long tail. If the
sum is zero, the R-plot will be a straight line. This result also demonstrates that the effects
of the exponents n and » are not unique, in that a change in one can be compensated for by
an equivalent but opposite change in the other. Thus, the combination n=1 and n = 2 will
give the same (normalised, A(r) ©1) R-plot as for n = 2 and » = 1. This non-uniqueness
issue will be revisited in Section 5.

3.2. Inclusion of Accessibility
When the effect of accessibility is included in the R-plot, the shape is that predicted for
perfect accessibility, multiplied by the accessibility function;

S (1) = A(F)S ;' (r) 6)

The accessibility function generally looks sigmoidal and the addition of accessibility
creates a plateau region to the R-plot. The inclusion of accessibility effects can therefore
produce portions of the same R-plot with concave and convex curvatures. Thus, the kind of
R-plots which exhibit a shoulder or kink, and a tail region, as seen in most experimental
curves, can be obtained with a negative (n+n) and restricted accessibility. However, some
experimental data sets cannot be reproduced with the constrained 3Rs model described
thus far, and the simple unimodal pore size model must be extended.

3.3. The Two Pore Family Model

An analytic form for the case in which there are two families of pores, with different
volume and pore radius distribution exponents, should be capable of reproducing
experimentally observed R-plots with long tails, a feature that we will subsequently ascribe
to microporosity. One family describes all the pores above a critical radius, 7y and the
other describes pores below this radius (i.e. the microporosity). The maximum radius is
denoted by 74, While the minimum 1is ;. If the number fraction of pores in the second
family (small pores) is given by a, then;

0 f(r)ar=a, " f(r)ar=1 (7)

min min



SCA 2001-15

To satisfy these equations, it is found that;

. 1- +1
f(r):J "= (rn1+al)_(;:/]n1+1 " T <r <rmax
max m (8)
7)== 20t e e,
m min
Writing the volume functions as:
=k M
V(I") v]r rm <r< rmax (9)

v(r)=k ™ ry, <r<r,

min

n+n+l n +n+1 23
1T TG
max —_
v

n]+}’l]+1 ﬂ

SHg (7‘) = A(F)- ar:;:nlﬂ _ rrr; L+ 0 a:12+n2+1 _ rrr;izn+nz+l O (10)
J kK, T+ kL& H
n+m+l & 2 n,+m,+1 &

for rm<r <rua, and

n +n|+] n +n|+] 0 n +n2+] rn2+n2+l 0
maX _+f k %
é n, +n 1 5 ”23 n,+m+l 3
SHg( ) a" el N +n|+] notmHl o notmtl g (11)
maX :+f kvz(\ m min i
n +n]+1 p  n+n+l

for rpim<r<rm

To complete the analysis, an analytic form for the accessibility function is required. This
function depends on both the size of the network and the co-ordination number, z. By
standardising on a 15x12x12 network, a family of curves was obtained, plotted as A4(p)
versus p, where p is the number fraction that would have been invaded for the fully
accessible case. These curves, obtained from network simulations, were used to test
various analytic functions to find the one most appropriate to model the accessibility.

The most appropriate function was found to be:

_ 1
A(p) ~1+10* exp(kzp) (12)

The constant, k, can be found by considering the approximate relation at the 3D percolation
threshold, psyreshora » 1.5/z, where A(p) should equal 0.5 (by symmetry arguments). Thus, k&
is found to be —6.14. Figure 2 compares the analytic accessibility function (Equation 12)
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with that obtained from the 15x12x12 network model simulations. Expressing the
accessibility function in terms of r rather than p, 4(r) is found to be:

1
A(F): ‘l n+l m+1 U (13)
1+10* expj - 6.14z(1- a) rr;f:] Y
T max - g

for rm<r < ryax, and

1

A(r)= 'i' g P (14)
prtl o m A
1+10° exp] - 614Z§1‘ a)+a f:: +1 ny+1 By
T rmz - rmizn '

and for ryi, <7r <rm

3.4. Application to Experiment

Using the relations developed above (Equations 10, 11, 13 and 14), a spreadsheet was
created to generate the R-plot resulting from the input parameters 7uqx, m ¥min, 11, 12, N1,
n,, a, z, and the ratio k,;/k,,. Using this spreadsheet, it was possible to overlay the R-plots
from the experimental data sets, and by adjusting the parameters, to find a close fit
between the experimental and the model R-plots. The resulting R-plot comparisons are
shown in Figure 3 (using the analytical model described above with two families of pores.
Table 1 shows the parameters used to obtain the fits for these curves. z; is the effective co-
ordination number for the network of large pores alone (Rm<7 < Ryay).

Although excellent matches were obtained between the experimental and analytical R-plot
curves, a more rigorous test of the procedure would be to use the anchored network to
predict the corresponding relative permeabilities % this is considered next.

Important Note: Note that the accessibility effect (characterised by a large negative slope
at low mercury saturations) is largely absent from some of the experimental data sets. This
is primarily due to re-sampling and “clean-up” of some experimental data prior to supply
to the authors. Moreover, no surface correction had been applied to the raw data ¥
unfortunately, this raw data was unavailable to the authors and the model should not be
expected to match the laboratory data in this region.

4. DIRECT PREDICTION OF RELATIVE PERMEABILITIES

In order to address the issue of relative permeability prediction, a decision was required
concerning the network of microporosity. Although useful as a store of wetting fluid, the
microporosity was not considered to play an important role in fluid transport.
Consequently, pores belonging to the small pore family were removed from the network
and flow calculations were restricted to the remaining macroscopic pores. Removal of the
microporosity results in poorly connected macropore networks with z<4. All of the
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simulated networks were bonds-only models, and the 3Rs approach was used when
assigning their properties.

Generally, direct relative permeability predictions assuming a fixed conductivity exponent
of 3.0 were very poor (Figure 4), although the occasional data set was well-reproduced
(Figure 4c). Slightly better predictions were produced when the conductivity exponent was
allowed to vary from sample to sample and the results of Figure 4 are therefore rather
pessimistic. Why should predictions from (apparently) well-anchored networks give such
poor predictions? The results of Section 3 hold the key to answering this important
question. That analysis clearly demonstrated that the shape of an R-plot is not uniquely
defined in terms of a given combination of co-ordination number, volume exponent and
pore size distribution exponent ¥ different parameter combinations give identical R-plots.
Given that laboratory flow data would be far more sensitive to some parameters (especially
coordination number) than the static MICP data, it is perhaps not too surprising that the
predicted relative permeabilities did not match the experimental values. However, from the
work reported so far, it is still not clear whether the possibility exists that a consistent
parameter set could be found that successfully reproduces both the R-plot and relative
permeability data from experimental samples. In order to address this possibility, the
inverse problem must be investigated.

5. THE INVERSE PROBLEM AND NON-UNIQUENESS

5.1. The Inverse Problem

An alternative approach to pore-scale anchoring is to simply match the gas-oil relative
permeability curves using a highly constrained bond model. Capillary pressure prediction
is then treated as an inverse problem. If good matches between simulation and experiment
can be found using his procedure, then we know: (i) that it is possible to anchor a simple
bond model to a reservoir sample, and (ii) that a consistent set of network parameters does
exist that successfully reproduces both the R-plot and relative permeability data from
experiment. Remember that the constrained set of adjustable parameters in the macropore
model comprises only: coordination number (z), pore size distribution exponent (n), pore
volume exponent (N) and pore conductivity exponent (I ).

Finding an optimised set of network parameters for each sample can be a time-consuming
process, requiring many iterations based upon human judgement (although the whole
process can be accelerated greatly if a close initial guess is possible). Since the results of
many network simulations were already available to the authors, it made sense to utilise
this information in a more systematic manner. To this end, an Artificial Neural Network
(ANN) was developed using the parameterised relative permeability curves as inputs, and
the network parameters as targets. This gave a way of obtaining a good initial estimate of
the network parameters required to match a given pair of relative permeability curves.

Results of the inverse problem are shown in Figure 5 % both relative permeability and
inverse capillary pressure results are shown. 5 sets of relative permeability simulations
were performed using networks of dimensions 15x12x12 and differences in random
number seed account for the scatter seen in each comparison. The parameter combinations
required for each match are given in Table 2: values for conductivity exponent (not shown)
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were highly constrained and in the range | T [2.5,4.0]. These results clearly demonstrate
that, for each data set, a consistent set of parameters can be found that reproduces both the
gas/oil relative permeability curves and the mercury capillary pressure curve (although, for
completeness, it should be noted that the occasional pathological case does exist). At first
sight, this appears somewhat contradictory % how could a consistent match be found for
the inverse problem but not for the original formulation? The answer lies in the fact that
the experimental MICP data can be reproduced using many different model parameter
combinations.

5.2. Non-Uniqueness

The analysis presented in Section 3 demonstrated that it is often possible to compensate for
a change in one network parameter by adjusting the other two (from z, n, and »), to obtain
a very similar R-plot. Indeed, an example of this problem was seen when an artificial
“experimental” R-plot was generated using a network model, and fits were attempted by an
operator who was unaware of the network parameters used in the simulation. Even with
such clean data, several possible fits could be obtained, making recovery of the exact
values of the original parameters impossible. It is therefore very important to establish
more rigorously the degree to which these parameters are interdependent.

An extension of the analysis given in Section 3 (for a unimodal distribution function) can
be used to determine which parameter combinations will give similar shaped R-plots.
Consider two networks with parameter combinations (n1,Nn;,z1) and (n2,M,z2). Examination
of the second derivative shows that the curvature of the R-plot depends on the sum of n and
n (see earlier). Thus, to ensure that a second plot has the same curvature as the first, the
new volume exponent must satisfy,

n2=(n,+n,)-n2 (15)

Another constraint required for two R-plots to look similar is that they both have the same

value of r at A(r) = 2 ¥ this effectively correlates the two plateau regions. After a little
algebra, this implies that z, must satisfy:

ny+l _  my+l

v max m ( 1 6)

e ChiYo!
On +1 —
(; ny+l %nﬁ-] _ 3 >( m+l i+l )9I i

rmax grmax 2 rmax rm - -
Z g =+
7]

N | W

Z, =

The significance of these equations is that a family of parameter triples can be determined
that produce very similar R-plots but very different relative permeability curves. This
answers the question posed at the end of Section 5.1 %4 it is obviously easier to find a
consistent set of network parameters from the inverse problem. Hence, anchoring network
models to capillary pressure data is a necessary but not sufficient condition for accurate
relative permeability prediction % the procedure is non-unique.
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6. CONCLUSIONS

The aim of this paper was to extend the predictive capability of pore-scale network models
by using real experimental data as lithological "anchors". A more direct modelling
approach was taken compared to that used elsewhere and a preliminary methodology —
utilising mercury injection capillary pressure (MICP) data — was developed that could
permit both the matching of existing experimental gas/oil relative permeability curves and
the quantitative prediction of additional data sets. The main conclusion from this work
were the following:

- Initially, a two pore-family model was used for anchoring purposes and 8 experimental
data sets were considered. In all cases, a good match to the experimental MICP data was
achieved, including that corresponding to microporosity.

- The results of direct gas/oil relative permeability predictions, however, were found to be
generally poor and the anchored parameters differed from those required to match the
relative permeability data directly.

- The inverse approach, whereby the relative permeability curves were matched and the R-
plot was predicted, was far more successful. For each data set, a consistent set of
parameters could be found that reproduced both the gas/oil relative permeability curves
and the mercury capillary pressure curve. This implies that network models can be
anchored to real experimental samples and used for subsequent sensitivity analyses (to
flowrate and viscosity ratio, for example).

Subsequent analysis showed that a family of (n,n,z) parameter triples could be
determined that produce very similar R-plots but very different relative permeability
curves. This explains why the inverse approach proved more successful.

Hence, anchoring network models to capillary pressure data is a necessary but not
sufficient condition for accurate relative permeability prediction ¥ the procedure is non-
unique.

- Analysis also shows that if only one of the (n,n,z) parameters could be found by some
other means, then this would provide the “missing link” between data fitting and data
prediction. Possible sources for this information may lie in mercury intrusion-extrusion
loops, NMR T, distributions or thin section analysis %4 work in these areas is still ongoing.
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Table 1. Best fit parameters for freely fitted R-plots.

Sample Rmax Rm Rmin n n n3 n, kz/kl a z ZL
A 26.6 4 0.002 0.5 1 -0.7 0 4 0.37 6 3.78
B 18.1 4.5 0.002 1.6 1 -0.7 0 11.5 0.13 6 5.22
C 8.57 2 0.002 0 0.3 -1.25 0.5 5.5 0.38 5 3.1
D 11.85 2 0.002 -0.1 0.28 -0.9 0 1.3 0.48 6 3.12
E 8.2 1 0.002 -0.65 0 -0.65 0 1.25 0.41 6 3.54
F 6 3.5 0.002 2 3 -0.55 0 100 0.5 6 3
G 373 3 0.01 -0.95 0.1 -0.55 0 1 0.4 5 3
H 93.9 4 0.002 -0.95 0.85 -0.6 0 3.25 0.47 6 3.18

Table 2. The parameters used to obtain consistent fits of relative permeability and capillary pressure data.

Sample Rimax Rn Ruin n n, n, n, ko/ky a z 7L
A 29 4 0.002 0 1 -0.8 0 4 0.333 6 4
B 23 4.5 0.002 0.2 1.2 -0.8 0 4.5 0.4 6 3.6
C 7 2 0.002 0 1 -0.75 0 4.75 0.333 6 4
D 11 2 0.002 -0.3 0.5 -0.85 0 3 0.367 6 3.8
E 5.8 2 0.002 -0.45 0.4 -0.65 0 3.4 0.433 6 3.4
F 6.4 4 0.002 0 0.9 -0.55 0 4.75 0.45 6 33
G 13 6.5 0.002 0 1.2 -0.7 0.2 85 0.175 4 33
H 80 5 0.002 -0.8 0.7 -0.5 0 2 0.5 6 3
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o 300505 Tge]
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Figure 1. Schematic mercury intrusion data showing plateau, kink, and tail regions.
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Figure 2.

Figure 3. The best fit analytic R-plots for the two pore family model fitting the 8 sets of experimental data A-F.
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Accessibility functions, 15x12x12 simulations and
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Figure 4. Direct predictions of gas-oil relative permeability curves using the parameter sets derived from R-plot fitting.
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Figure 5.

Figure 5 (cont.).
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