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ABSTRACT 
The dependence of the gas and condensate relative permeabilities and of the critical condensate 
saturation on the fluid properties (interfacial tensions, densities, and wetting characteristics), the 
rock structure and the operational parameters (velocity) is still poorly captured by the reservoir 
simulators. In the present paper a model is proposed based on the dependence of Kr and 
condensate mobility on two dimensionless numbers: the capillary number (ratio of the viscous to 
capillary forces) and the Bond number (ratio of the gravity to capillary forces). The spreading 
characteristics of the condensate on the substrate (solid surface or water film) are also taken into 
account. The model is tested against experimental results reported in the literature. A very good 
agreement is obtained indicating that the model captures correctly most of the controlling 
parameters.   

INTRODUCTION 
Describing flow processes that occur both far from and close to the wellbore region is a major 
issue to accurately predict gas-condensate reservoir performance. When producing a gas 
condensate reservoir, the pressure draw-down leads to the build-up of a liquid bank which gets 
progressively mobile. Once mobile, this oil bank flows towards the producing wells that may thus 
experience impairment. The liquid accumulation that occurs in the vicinity of the production 
wells tends to lower the deliverability of the gas by multiphase flow effects (Kr). In addition to 
that, the gas which is to be produced, tends to become lighter due to condensation and therefore 
less marketable. 

Predicting a gas condensate reservoir performance requires an accurate modeling of the flow 
behavior coupled with a correct thermodynamic modeling of the various processes. Once the 
liquid segregates, the way the densities of the two phases start diverging and the gas/liquid 
interfacial tension builds up depends on the thermodynamic properties of the gas condensate 
system. Hence, depending on how close to the critical point the system will get when the pressure 
decreases and the phase envelope is reached, the liquid accumulation and production is ruled by 
the balance between three main mechanisms: gravity segregation, capillary hold up and viscous 
drag. In order to be able to predict gas deliverability, two major features have to be studied: the 
dependence of Kr on the gas-condensate interfacial tension on one side and on the flow conditions 
on the other.  

For a long time only the effect of interfacial tension on Kr has been studied, and Kr changes have 
been attributed to rapid interfacial tension changes near to the critical point(1,3,9). More recently 
the effect of flow velocity on Kr has been acknowledged (10,11). The investigations have been 
oriented toward a dependence of Kr on the capillary number, a dimensionless number that 
includes both the interfacial tension and the velocity (21,11,12,5).  
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Another parameter that has been extensively studied is the critical condensate saturation, Scc. 
There is quite a controversy about the determination of this value. Values ranging between zero 
and 50% PV have been reported (4,16). This saturation is the minimum liquid saturation above 
which the condensate starts being mobile, corresponding thus to a non-zero condensate relative 
permeability. These low values of the condensate Kr control the gas-condensate segregation and 
impact the phase distribution and the condensate ring buildup. To correctly predict gravity 
segregation for near-critical systems it is necessary to compare viscous, capillary and gravity 
forces. To this end two relevant dimensionless numbers are used: the capillary number (Ca, ratio 
of the viscous to the capillary forces and predominant close to the well) and the Bond number 
(Bo, ratio of the gravity to the capillary forces and predominant far from the well). More 
specifically, three configurations can be identified: 1/ near wellbore region : high velocity, high 
interfacial tension (high Ca, low Bo) ; 2/ reservoir : low velocity, intermediate interfacial tension 
(low Ca, high Bo) ; 3/ near-critical reservoir : low velocity, low interfacial tension (high Ca, high 
Bo).   

The wetting behavior of condensate on the water phase is a key factor. Complete wetting of the 
condensate on water would favor hydraulic continuity leading to very low liquid saturations. 
There is evidence that for near-critical systems the condensate phase perfectly wets either the 
rock or the water phase covering the pore surface20. However, as the pressure decreases towards 
to the well a wetting transition may occur which would render the condensate phase only partially 
wetting on water. This would favor its trapping by capillary forces. 

The objective of this paper is to present a model for gas condensate Kr as a function of the 
capillary number and to demonstrate that apparently contradictory laboratory results on the 
dependence on interfacial tension and flow rate, separately considered, can be reconciled. This is 
achieved, within the framework of the Darcy description of multiphase flow in porous media 
(relatively far from the well so that inertial effects are not an issue), by introducing a unique 
dependence of Kr on the capillary number. Also a modeling of the combined effect of gravity and 
capillary forces on the critical condensate saturation is introduced. It takes into account the 
spreading characteristics of the condensate on the substrate (solid surface or water film).  

RELATIVE PERMEABILITY AND CAPILLARY NUMBER 
As seen in the previous section, the interfacial tension alone cannot adequately parameterize the 
relative permeabilities. The displacement of several phases in a porous medium is governed by 
two different forces: viscous and capillary (in the absence of gravity). Capillary pressure is 
assumed to represent the effect of capillary forces whereas viscous forces intervene in the Darcy 
equations and are represented by the Kr. Phase distribution and displacement within the porous 
medium depend on a complex combination of those two forces. Kr was found to depend on 
interfacial tension(1,3,9), a typical capillary parameter, and on the flow velocity11. When the 
interfacial tension vanishes, the capillary resistance to flow decreases. Therefore, the curvature of 
the Kr curves, that expresses for a given fluid the capillary effect induced by the presence of 
another fluid, decreases as well. Kr become straight lines either when miscibility is approached or 
when flow-rate is increased enough to make capillary forces negligible. Therefore it is anticipated 
that Kr depend on the capillary number, Ca, a dimensionless number defined as the ratio of the 
viscous to the capillary forces: 

Ca = 
σ
µv

  (1) 
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Dullien (1992) proposed another capillary number that includes the characteristics of the porous 
medium in addition to those of the fluids: 

CA = 4 
R

lCa.
  (2) 

where l is the core length and R is a typical size of a pore radius. It is chosen to be equal to the 
pore size corresponding to the entry pressure deduced from the mercury intrusion curve, that is R 
= */)cos(..2 Pθσ , with P* being the pressure at which the mercury starts invading the porous 
medium. This capillary number is such that when it is equal to unity viscous forces balance 
capillary forces. When CA ≥1 viscous forces are dominant. 

It is worth checking this assumption by comparison with Bardon and Longeron’s data (1980). 
These authors report a significative change in Kr for an interfacial tension smaller than 0.04 
mN/m. The tests were carried out in a 40 cm long Fontainebleau sandstone with 82 mD 
permeability and approximately 10% porosity. The velocity was about 20 cm/h. According to the 
authors, the Kr curves shape did change for a capillary number equal to 0.4 10-4 (standard 
formulation). To calculate the value of the capillary number CA, it is necessary to know the pore 
size corresponding to the entry pore pressure. This pore size can be calculated using the rough 
estimate √(8k/φ), which gives an average value of about 2 microns and thus a pore radius 
corresponding to the entry pressure of about 10 µm. This gives CA = 6.4. This value of CA, 
greater than unity, is thus consistent with dominant viscous forces that tend to decrease the Kr  
curves curvature. 

Another example is the one found in Henderson et al. (1995). Gas capillary numbers ranging 
between 0.18E-5 and 0.14E-4 were reported. The experiments were performed on a core 61cm 
long, of 92mD permeability, 0.198 porosity and an irreducible water saturation of 0.264. This 
gives CA>1 (1.96<CA< 7.86), and explains why the authors found an effect of the flow rate, and 
thus of the capillary number on the relative permeabilities inasmuch as all the tests were 
performed in the domain of dominant viscous forces. 

Another example that can be cited here is the work presented by Asar and Handy (1988). 
Experiments have been performed in a 1ft long Berea sandstone, with 20% porosity and  193mD 
permeability, for four interfacial tension values ranging from 0.03 to 0.82 mN/m. Even though 
only the range of the applied pressure drops is given, and calculation of the exact CA for each 
experiment is not possible, it is seen that CA ranges between 0.5 and ~80. This explains why for 
the highest interfacial tension (σ=0.82mN/m) capillary effects are dominant and the measured Kr 
approach those obtained for conventional gas-oil flood, while for σ=0.03mN/m viscous effects 
are dominant and Kr curves approach straight lines. 

MODELING OF THE RELATIVE PERMEABILITY (Kr) AND THE 
CRITICAL CONDENSATE SATURATION (SCC) 
Porous Medium Model 
It is well known that the transport properties in a porous medium depend strongly on the pore 
structure geometry. Several papers proved that sedimentary rocks are one of the most extensive 
natural fractal systems (14,19). They demonstrated that the pore volume and the pore-rock interface 
is fractal over length scales that may range from the nanometer to a few microns and have the 
same surface fractal dimension DS. DS takes values between 2 and 3, where 2 characterizes 
smooth clay-free rocks, while values close to 3 are characteristic of strongly clayey sandstones. 
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This fractal dimension can be determined easily from the capillary pressure curve at low wetting 
phase saturation(6) or using sophisticated measurement methods as the x-ray or neutron scattering 
techniques(2) improving considerably the measurement accuracy. 

The modeling approach proposed here has been inspired by de Gennes paper (1985) on the partial 
filling of a fractal structure by a wetting fluid(15). The internal surface of a pore is assumed to be a 
fractal surface; consequently, a perfectly wetting phase remains always continuous. The isotropic 
fractal surface is modeled as a bundle of parallel capillary tubes with a fractal cross-section. The 
cross-section of each tube is constructed by an iterative process, by dividing the half perimeter of 
a circle in η parts and replacing each part by half a circle (Fig. 1). At each step k of the process, 
Nk new grooves are created with radius Rk and total cross-section area Ak; these characteristics are 
given as a function of the initial tube radius R0 by the following relationships: 

k
k RR )/(0 ηπ=  (3) 

k
kN η=  (4) 

k
k RA )/(

2
1 22

0 ηππ=  (5) 

It can be easily shown that the perimeter of a section is given by  
)1(

00 )/(/ LDRRLL −=  (6) 
where L0 is the perimeter of the main tube and DL is the fractal dimension associated with the 
perimeter (linear fractal dimension, DL=DS-1) given by 

πη
η
/ln

ln=LD  (7) 

Capillary Pressure and Relative Permeability 
At equilibrium, all tubes with size smaller or equal to Rk, where Rk is given by Laplace's law: Pc = 
2σ/Rk are occupied by the wetting fluid, and larger tubes by the non-wetting one. Thus, the 
wetting fluid saturation is given as the surface of the tubes occupied by the wetting phase to the 
total cross section,  
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and the correlation between capillary pressure and wetting phase saturation is given by  
)2/(1

0

2 −= LD
wc S

R
P σ

 (9) 

To simplify calculation of Kr, the grooves are replaced by capillary tubes of the same diameter 
and parallel to the direction of flow. To calculate Kr , Poiseuille's law is applied in each capillary 
of the bundle. If the flow rate in a single tube of radius Rk is given by 

P
R

Q k
k ∇−=

µ
π

8

4
 (10) 

then the Kr of the wetting phase, which occupies the smallest tubes, is calculated as  
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It has been considered here that the wetting fluid flows down to zero saturation and that there is 
no irreducible or immobile wetting phase saturation. However irreducible phase saturation can be 
easily introduced in the calculations as presented elsewhere23. This model, when applied to film 
flow and low wetting phase saturations, permits to estimate Kr for a range of saturation values 
where reliable experimental results are hard to obtain (13, 17). 

Modeling of Gas Condensate Relative Permeability as a Function of CA 
Threshold Condensate Saturation 
It is proposed now to use the model described above to calculate gas condensate Kr and the 
impact of capillary number on it. There exists experimental evidence that near the critical point 
the condensate is the wetting phase that spreads spontaneously on the solid surface24. During a 
depletion, and as the pressure goes down, the condensate saturation builds up. As wetting phase, 
the condensate occupies first the surface roughness and the smallest pores. If CA is low 
(0<CA<1), capillary forces will be dominant for the whole range of condensate saturations. If CA 
increases, viscous forces start being important (CA~1), and for high CA (CA>>1) they become 
dominant.  

For a given macroscopic capillary number different flow regimes may exist inside the porous 
medium at the pore level. In the bundle of capillaries for example, all tubes are subject to the 
same pressure gradient. Locally however different flow velocities develop depending on the tube 
radius. These different velocities lead to different local capillary numbers, meaning that at the 
same time in the smallest pores flow may be capillary dominated whilst viscous dominated in the 
rest. That means that for a given macroscopic or bulk capillary number, CA0, we can define a 
threshold condensate saturation, Stc, below which flow is capillary dominated and above which 
viscous forces predominate. Suppose that in the bundle of capillaries model Stc occupies the 
smallest pores from R∞ to Rk. The capillary number in the tubes k is CAk. From the definition of 
CA (Eq.2) it is seen that  

00 R
R

CA
CA kk =  (12) 

which can be combined to Eq. 8 to express in a different way the wetting fluid saturation  
)2(
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LD
k

c CA
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=  (13) 

It is now obvious that the threshold condensate saturation is the one for which CAk =1.  

( ) )2(
0

−= LD
tc CAS  (14) 

This expression permits to calculate for a given pore structure (given DL) the part of the wetting 
fluid flowing by capillary dominated flow as a function of the macroscopic capillary number. Fig. 
2 shows the dependence of Stc on CA for different fractal dimensions. It is seen that the higher the 
capillary number the lower the threshold condensate saturation. It is also seen that, for a given 
CA, Stc increases with DL. This means that, for the same macroscopic flow conditions, the more 
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fractal the pore structure the higher the wetting phase saturation (condensate) subject to a 
capillary flow regime. In other words in a clayey sandstone (high DL) the wetting phase maintains 
a low mobility up to rather high saturations, even at high capillary numbers where viscous forces 
would be expected to predominate. 
Condensate Relative Permeability 
The wetting fluid Kr is given by Eq. 11 up to Stc. The fluid above the threshold saturation, Stc, 
flows in the larger tubes by viscous dominated flow. The respective relative permeability for Sc > 
Stc  is taken proportional to the flowing saturation (straight lines).   

A sample calculation of the condensate (wetting phase) Kr and its evolution with CA is given in 
Fig. 3. A DL = 1.4 has been used in these calculations. This value is representative of a very 
weakly clayey sandstone. The Krc curves for three different capillary numbers (CA=3, 10, 100) 
are presented in this figure. For comparison purposes the curve for purely capillary dominated 
displacement is also given. It is seen that as viscous forces become important (increasing CA) the 
part of the fluid flowing under capillary dominated flow is reduced, and Kr increases 
considerably. 

Gas Relative Permeability 
Gas as the non-wetting phase occupies the bulk of the pores. In order to calculate its relative 
permeability, it is assumed that, if the condensate occupies all tubes with radius smaller than Rk, 
gas flows like in a single pore with radius Rg=R0+R1+…+Rk (Moulu et al., 1997). Thus for low 
condensate saturations (Sc<Stc), Krg is given by 

4
2(

1
max )1 






 −= − LDcrgrg SKK  (15) 

Krgmax is the maximum value of the gas Kr in presence of the other phase. For lower Sg, (Sc>Stc), 
gas circulates in the biggest pores with a Krg proportional to the flowing gas saturation 

)(
1 tcrg

tc

g
rg SK

S

S
K

−
=  (16) 

It is seen that, as well as Krc, Krg depends on the porous medium (through DL) and on the capillary 
number (through the dependence on Stc).  

A sample calculation of the gas (non-wetting phase) relative permeability and its evolution with 
CA is given in Fig. 4. As for Krc (Fig. 3) a linear fractal dimension of 1.4 has been used in these 
calculations. The Krg curves for three different capillary numbers (CA=3, 10, 100) are plotted. 
Also the curve for purely capillary dominated displacement is given for comparison. As viscous 
forces increase (increasing CA) the Stc decreases and the saturation range where gas permeability 
is proportional to Sg increases. 

Comparison with Experiments 
The proposed model is now tested against experimental measurements of near critical fluid Kr as 
reported in the literature. Kr at near critical conditions have been reported by Schechter and 
Haynes (1992). The experiments (injections at an average flow rate of 0.098cc/sec, for three 
interfacial tensions: 0.1, 0.006 and 0.002 mN/m) were performed in a Clashach sandstone of 
30cm in length, with a permeability of 200mD and a porosity of 18%. These data permit to 
calculate the CA numbers from the Ca values given by the authors: for Ca 3x10-4, 4x10-3 and 10-2 
we get the respective CA values 12, 133 and 400. Then Stc, Krc and Krg have been calculated with 
the model by taking DL equal to 1.65. This value, representative of a clayey sandstone14, has been 
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measured in a Clashach sample of comparable permeability to the one used in Schechter and 
Haynes' experiments. The comparison between Schechter’s measurements and the present 
model’s predictions are given in Figs 5 and 6. It is seen that for this example a very good 
agreement between experiment and calculations is obtained. The model successfully predicts gas 
condensate Kr as a function of the macroscopic capillary number. It also successfully predicts the 
threshold saturation Stc, below which the reduction of condensate mobility becomes significant. It 
is worth noting that there is no adjustable parameter in the model. The only parameter that has 
been assigned an arbitrary value (not reported in 21) is the fractal dimension DL.  

Bardon and Longeron (1980) have also reported Kr measurements at different and very low 
interfacial tensions. For flow rates 0.011, 0.01, and 0.012 cc/sec and interfacial tensions 0.065, 
0.038, and 0.0014 mN/m respectively, the Ca numbers calculated by the authors were: 0.19x10-4, 
0.38x10-4, 0.11x10-2.The CA numbers calculated as indicated above are 2.5; 6; 168. Comparison 
between the experiments and the calculations are given in Figs 7 and 8 for the condensate and the 
gas Kr respectively. The fractal dimension has been taken equal to 1.3. This value is 
representative of a very weakly clayey sandstone as was the one used in the experiments 
(Fontainebleau sandstone). A very satisfactory agreement is observed considering the 
uncertainties in the experimental Kr that have been obtained by numerical fitting of 
displacement/production data.  

Gravity Segregation and Critical Condensate Saturation, Scc 
The same model for the porous medium can be used to calculate the critical condensate saturation 
for mobility as a function of the spreading and interfacial properties of the fluid system, and the 
characteristics of the pore structure. We need first to introduce the Bond number, which is 
defined as the ratio of the gravity to capillary forces, in a way equivalent to the one proposed by 
Schechter et al. (1994) (e.g. defined at the macroscopic scale). 

σ
ρgRlBo ∆

=  (17) 

It is considered here that Scc is the minimum saturation at which the condensate is continuous and 
the conditions are such that gravity forces, favoring segregation, are dominant over the capillary 
forces that favor condensate trapping. That means that the condensate has first to form continuous 
films on the solid substrate or on the water, if interstitial water is present in the porous medium. 
Still these continuous films may be immobile if gravity forces are not strong enough compared to 
capillarity. Scc is the saturation above which the condensate Kr takes a non-zero value. It is to be 
distinguished from the threshold condensate saturation, Stc, that determines the saturation below 
which the condensate has a reduced though finite mobility. 

In a water-wet porous medium, in presence of irreducible water saturation, a relevant parameter is 
the spreading coefficient of oil (condensate) on water: S = σwg-(σwc+σcg). At equilibrium S is 
always negative or equal to zero. It has been already verified through numerous studies on three-
phase displacement that fluid distributions depend on the sign of the spreading coefficient of oil 
on water in presence of gas. For S = 0, oil (condensate) forms a film spontaneously on water in 
presence of gas. Spreading oil films assure hydraulic continuity of the oleic phase and can lead to 
very high recoveries. For S < 0, oil does not spread on water in presence of gas and a finite 
contact angle, θ, is formed between the gas-condensate and water-condensate interfaces. The 
above hold rigorously only for a flat solid surface. Wetting on a rough surface is very different, 
and apparent contact angles depend both on the wetting properties of the flat surface and on the 
structure of the roughness18. Two types of trapping can be considered: a) continuous phase 
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trapping in the smallest tubes where capillary forces are very strong and b) discontinuous phase 
trapping, when S <0 and the condensate is in disconnected form.  

Spreading Condensate Trapping (S=0) 
In absence of water or if the condensate spreads on the water (S=0) films are spontaneously 
formed at the moment of condensate apparition. These films assure automatically hydraulic 
continuity. The continuous phase trapping is related to the Bond number. In the bundle of 
capillaries model, introduced in paragraph 3.1, the condensate occupies the smallest pores, from 
R∞ to Rk in absence of water or from Rwi to Rk , if the tubes from R∞ to Rwi are occupied by 
irreducible water. The Bond number in the tubes k is Bok. From its definition it results  

00 R
R

Bo
Bo kk =  (18) 

If Bok >1 gravity forces predominate and Rk tubes are emptied under gravity segregation. The 
critical condensate saturation for mobility of a continuous fluid, Scc/c, is the one for which Bok=1 
and is given by 

( ) wi
D

ccc SBoS L −= − )2(
0/  (19) 

Non-spreading Condensate Trapping (S<0) 
If S<0, in condensate apparition small droplets are formed. If the substrate is flat, these droplets 
form an angle θ  for which  

cg

S1 cos
σ

θ +=  (20) 

On a fractal surface they form an apparent contact angle, θapp, related to θ with the following 
expression18  

θθ cos 
R
R

 cos
LD

k
app

1
0

−









=  (21) 

where R0 and Rk are the upper and the lower limits of fractal behavior. If cosθapp =1, the non-
spreading condensate (cosθ <1) remains continuous. The fractal surface induces wetting of a non-
spreading liquid. Thus the criterion for spreading phase mobility has to be applied, as explained 
above. The critical condensate saturation is given by Eq. 19.  

When cosθapp <1 the condensate forms lenses and remains disconnected. It is considered that 
disconnected phase remains immobile and it is not subject to gravity segregation. The critical 
saturation for discontinuous liquid mobility, Scc/d , is the one occupying tubes up to Rk for which 
cosθapp  becomes equal to 1. It is given by the following expression as a function of the spreading 
and interfacial properties of the system and the characteristics of the pore structure here expressed 
by the fractal dimension DL. 

( ) )(1S LD-2

D
Dcc/d

L

L

θ

π

cos1

1
2

−=

−
−

 (22) 
Then the critical saturation for mobility of a non-spreading condensate is the sum of the trapped 
continuous (if any) and trapped discontinuous liquid.  
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Fig. 9 shows the critical condensate saturation for a discontinuous phase (S<0, cosθapp<1) for 
various values of the fractal dimension. Scc/d can take extremely high values for strongly non-
spreading fluids (θ =90°, cosθ =0)) and highly fractal pore space (high DL). 

CONCLUSIONS 
Flow rate and interfacial tension dependence of relative permeability is explained on the basis of 
the competition between capillary and viscous forces. Kr are shown to deform and approach 
straight lines when viscous forces overcome capillary forces. This can be achieved either by 
decreasing the interfacial tension or increasing the flow rate. To account for that, a capillary 
number, CA, introduced by Dullien(8) is used. It includes, in addition to fluid properties, porous 
medium properties. CA allows to precisely define the flow rate (or interfacial tension) threshold 
above (respectively below) which Kr start to deform. This hypothesis has been validated on 
experimental results obtained either by modifying the interfacial tension or the flow rate. 

A model has been proposed to calculate gas condensate Kr as functions of the capillary number. 
The model includes the structure characteristics of the porous medium through its fractal 
dimension. It predicts the modification of the Kr curves as the capillary number changes (velocity 
or interfacial tension changes). The model has been tested against experimental results reported in 
the literature and a very satisfying agreement has been obtained. 

A threshold condensate saturation, Stc, can be predicted below which the condensate mobility is 
extremely reduced, even though finite. Stc may be very high in highly fractal (very clayey) 
sandstones. It decreases with increasing capillary number. 

The critical saturation for condensate mobility, Scc, increases with increasing interfacial tension 
(decreasing Bond number) and fractal dimension. Non-spreading condensate would be subject to 
severe trapping, increasing with increasing fractal dimension and decreasing spreading 
coefficient. 

NOMENCLATURE 
 Ak = area of the grooves of step k 
 Ca = standard capillary number (=µv/σ) 
 CA = Capillary number (=4Ca l /R) 
 Bo = Bond number (= ∆ρgRl/σ) 
 DL = linear fractal dimension 
 DS = surface fractal dimension 
 g = acceleration of gravity  
 k = permeability  
 Kr = relative permeability 
 Kri = relative permeability of fluid i 
Krgmax = maximum gas relative permeability  
 l = porous medium length 
 L = perimeter of a section of the fractal 
object 
 Nk = number of objects of step k 
 Pc = capillary pressure 
 Qk = flow rate in tube of radius Rk 

 R = entry pore size  

 R0 = initial capillary tube radius in the fractal 
pore model 
 Ri = capillary radius (i= 1,2,...k step of the 
fractal construction) 
 Rg = radius for gas flow in the fractal pore 
model 
 Rwi = maximum tube radius occupied by 
irreducible water 
 S = saturation 
 S = spreading coefficient 
 Si = saturation of fluid i 
 Swi = irreducible water saturation 
 Scc = critical condensate saturation 
 Scc/c = critical condensate saturation for 
continuous phase 
Scc/d = critical condensate saturation for 
discontinuous phase 
 Stc = threshold condensate saturation 
 v = velocity 
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 ∇ P = pressure gradient 
 ∆ρ = density difference 
 η = number of new tubes created at each step 
 θ = contact angle between gas-condensate and 
water-condensate interfaces  
 µ = viscosity 

 σ = interfacial tension 
 φ = porosity 
Subscripts 
c, g, w = condensate, gas, wetting phase 
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Figure 1. The fractal pore model and the phase distribution within it. 
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Figure 2. Threshold condensate saturation as a 
function of the macroscopic capillary number for 
various fractal dimensions 
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Figure 3. Effect of capillary number on the 
condensate relative permeability (DL=1.4) 
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Figure 4. Effect of capillary number on the gas 
relative permeability (DL=1.4) 
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Figure 5. Krc: Comparison between the model 
and Schechter and Haynes’ experimental results  
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Figure 6. Krg: Comparison between the model 
and Schechter and Haynes’ experimental results
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Figure 7. Krc: 
Comparison between the 
model and Bardon and 
Longeron’s  experimental 
results
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Figure 8. Krg: 
Comparison between the 
model and Bardon and 
Longeron’s  experimental 
results
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Figure 9. Krg: Effect of cosθ (negative spreading coefficient) on the 
critical condensate saturation of a discontinuous phase for various 
values of the fractal dimension 

  




