
SCA2002-25 1/14 

THE MISSING LINK BETWEEN PORE-SCALE 
ANCHORING AND PORE-SCALE PREDICTION 

Steven R. McDougall and Ken S. Sorbie 
Department of Petroleum Engineering, Heriot-Watt University 

 
ABSTRACT 
An earlier paper by the authors (SCA 2001-15) discussed the predictive capability of 
pore-scale network models by using real experimental data as lithological "anchors". The 
ultimate goal of this approach was to produce an anchored model capable of relative 
permeability prediction. An additional advantage of having such a calibrated model 
would be that a wide range of rock/fluid sensitivities could be examined without recourse 
to additional experiments. 
 
Paper SCA 2001-15 presented a preliminary methodology — utilising mercury injection 
capillary pressure (MICP) data — that could permit the matching of existing 
experimental gas/oil relative permeability curves. Results demonstrated that a basic four-
parameter model was sufficient to reproduce the vast majority of experimental drainage 
relative permeability curves that were examined. The constrained set of adjustable 
parameters in the macropore network model comprised: coordination number (z), pore 
size distribution exponent (n), pore volume exponent (ν) and pore conductivity exponent 
(λ). Each of these quantities has a clear physical interpretation. 
 
However, we also showed that anchoring network models to mercury intrusion data alone 
was insufficient for predicting relative permeabilities a prior. There was an 
interdependence of parameters and, consequently, an infinite set of parameter 
combinations could be chosen that matched the MICP data but gave very different 
relative permeability predictions. It was concluded that future analysis of MICP data 
should be performed in conjunction with the analysis of some other independent 
experiment — an experiment that would give the additional data that could form the 
“missing link” between anchoring and prediction.  
 
We have developed two approaches to evaluating this missing link. In the present paper, 
we present one potential approach and show how a unique parameter combination can be 
derived using only MICP data and routinely-measured residual saturations (Srw and Srnw). 
The methodology incorporates some simple ideas from percolation theory and is first 
verified using synthetic MICP data and residual saturations obtained from anonymous 
network simulations. The anonymous data is analysed using our new approach and we 
find that we can successfully retrieve the unique parameter combination used to generate 
the synthetic data.  Having obtained the relevant parameter combination, we then go on to 
predict the corresponding relative permeability curves. Predictions are shown to be in 
excellent agreement with the anonymous data and we then go on to examine laboratory 
core data using the same approach.  
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INTRODUCTION 
Large-scale simulation of immiscible multiphase fluid flow in porous media necessarily 
requires a number of petrophysical parameters to be specified.  In the context of two-
phase flow, the requisite parameters include: (i) absolute permeability, (ii) capillary 
pressure (the relationship that links wetting and non-wetting phase pressures as a function 
of saturation), and (iii) two-phase relative permeabilities (the relative conductance of 
each phase as a function of saturation).  Unfortunately, laboratory determination of this 
data   especially (iii)   is time-consuming and costly, and so a number of different 
approaches have been developed in an attempt to predict missing measurements using 
data that are more easily acquired.  For example, the empirical relationships published by 
Burdine [1], Brooks and Corey [2], and van Genuchten [3] are often used to derive 
relative permeability functions from capillary pressure curves when no core flood data 
are available. 
 
Pore-scale network models offer an alternative approach towards the calculation of single 
and multiphase flow properties by explicitly incorporating interconnected pore elements 
into a three-dimensional framework (see [4] for a fuller review).  The key term here is 
interconnected   although great progress can be made using capillary bundle models 
(indeed some of the empirical models mentioned above are based upon such a 
simplification), it is the interconnected nature of the underlying pore structure that is 
largely responsible for the richness of behavior observed in the laboratory. Here, the 
predictive capability of pore-scale network models is extended by using real experimental 
data as lithological "anchors". The aim of the study is to anchor pore-scale network 
models using cheap, routinely-measured data — such as mercury injection capillary 
pressure (MICP) data — and then go on to a priori prediction of gas-oil relative 
permeability data sets in the presence of Swi.  
 
Results from an earlier phase of this work (SCA2001-15) were extremely encouraging 
and considerable progress had already been made towards the ultimate goal of producing 
a fully predictive model. However, it was found that an infinite set of network parameter 
combinations were capable of producing almost indistinguishable capillary pressure 
curves. Hence, in order to increase the predictive capability of network models, some 
additional research is required — perhaps by considering an independent measure of one 
of the associated anchoring parameters or by the development of a new analytical 
approach. The current paper describes an example of the latter and endeavours to find the 
“Missing Link” between pore-scale anchoring and pore-scale prediction. 
 
The approach taken is both simple and extremely powerful, ultimately leading to a unique 
solution to the anchoring problem.  A brief description of the method is presented first 
and this is followed by its application to interconnected networks and some ideas are 
presented concerning how necessary measures could be obtained from routine SCAL 
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data. Finally, the new methodology is applied to some experimental data and relative 
permeability predictions are presented. 
 
BACKGROUND TO THE MODELLING APPROACH  
One of the simplest network modelling approaches for simulating multiphase flow in 
porous media is the “3Rs” approach, where the medium is approximated using a network 
of “pore elements”. These pore elements are of arbitrary internal geometry, which is 
essentially parameterized by the associated capillary entry lengthscale. Each element is 
assigned a capillary entry radius (r), a volume (V(r)) and a conductance (g(r)) — the 
volume and conductance are considered to be proportional to the capillary entry radius 
raised to some power. In addition, the pore size distribution function (PSD),  f(r), is also 
assumed to follow a power law scaling, although the methodology developed here can be 
used with any single parameter distribution (including bell-shaped distributions).  
 
In the discussion below, the various parameters in our pore element model and their 
physical interpretation are as follows (see [4] for additional information): 
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♦  z —coordination number of the network;  typically 2.5 < z < 6 in 3D; 
♦  ν —volume exponent. Pore volume V(r) ~ rν — typically 1 < ν < 3 ; 
♦  λ —conductivity exponent. Pore conductance  g(r) ~ rλ  — typically 2 < λ < 4 ; 
♦  the wettability of the pore as defined by cosθow (for an oil/water system). At present, 
we will consider the system to be of uniform wettability and it will be taken as water wet.   
 
Hence, the network model has four fairly tightly constrained parameters and these are to 
be found uniquely.   In the approach described below, we must still determine the 
conductivity exponent, λ, although this appears to be very constrained (2 < λ < 4).   
However, some scaling arguments presented elsewhere [5] suggest a way of obtaining the 
ratio (λ/ν) which offers an additional constraint on the parameter set above. This 
particular aspect of the problem will not be dealt with directly here, however, and a fixed 
λ-value of 4 will be used throughout the remainder of the paper.  
 
PERCOLATION THEORY BACKGROUND 
Percolation theory was first used by Broadbent and Hammersley [6] to investigate the 
flow of gas through carbon granules (for the design of gas masks to be used in coal 
mines). In the present context of fluid flow, percolation theory emphasises the topological 
aspects of the problem, dealing with the connectivity of a very large number of elemental 
pores and describing the size and behaviour of connected phase clusters in a well-defined 
manner.  
 
The primary focus of this section is to discuss how ideas from percolation theory can be 
applied more specifically to the anchoring problem.  As a simple, instructive analogue, 
consider first a two-dimensional square lattice of pore elements (we use the term “pore 
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elements” here to emphasize the fact that no precise pore geometry has been assumed. 
However, the elements can be thought of as simple capillary tubes to aid understanding).  
The most pertinent concepts from percolation theory will now be discussed using this 
geometry. Consider the critical behavior of the network.  Assume that, initially, all of the 
tubes are blocked and that they are then opened at random.  For any given geometry there 
is a unique fraction of tubes that must be open before flow across the network can 
commence; this critical fraction is called the percolation threshold (Pth) and for a simple 
(infinite) square lattice has the value Pth=0.5 exactly.  One of the most important aspects 
of this result is that it is independent of the radius distribution; it only depends upon the 
topological structure of the network (actually, the co-ordination number (z) and the 
Euclidean dimension (d)).  In fact, the percolation threshold and system topology are 
linked by the equation: 
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([7], [8]).  Table 1 shows percolation thresholds and calculated values of zPth for a variety 
of two- and three-dimensional geometries.  Cubic (3D) geometries of 30x30x30 nodes 
have been used for calculations here and, not surprisingly, calculations using larger 
networks give even greater accuracy.  
 
Now, if instead of opening pores of random sizes, the pores are opened systematically 
beginning with those of largest radius (although these are still located at random 
positions in the network), it is clear that flow will commence once a cluster of large open 
pores spans the system (we refer to this model as a pure top-down fill and it is used 
purely for didactic purposes).  The radius at which flow occurs is known as the 
percolation radius, Rp, and is defined implicitly by the equation: 

        (2) ∫= max )(
R

Rth
P
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where f(r) is the normalized tube radius distribution function and Pth the percolation 
threshold. This is illustrated in Figure 1, where it is clear that the process yields a 
spanning cluster, together with a number of smaller isolated clusters. However, the 
simulation of low-rate drainage processes is carried out using a top-down invasion 
percolation model with hydraulic trapping of the wetting phase.  In this case, the injected 
nonwetting phase first fills the largest pores connected to the inlet face of the network, 
and then proceeds sequentially occupying smaller and smaller pores. Although this 
process is very different from the pure top-down pore filling illustrated in Figure 1, the 
resulting flowing clusters are, in fact, identical. This is shown in Figure 2, where a 
physically realistic invasion percolation process has been implemented. Hence, the 
invasion percolation spanning cluster also appears at R=Rp (although p(Rp) and SHg(Rp) 
will both tend to zero for very large networks, as the percolating cluster itself is highly 
fractal in nature).  
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The foregoing discussion means that (1) and (2) can also be utilised to study the invasion 
percolation process characterizing a drainage process.  Rearranging (1) and (2) gives, for 
a 3D network (i.e. d=3): 
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If a pore-size distribution (PSD) function of the form f(r) ~ rn is assumed, then this 
becomes: 
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Therefore, assuming that Rmin, Rmax, and Rp can be measured, equation (4) constitutes a 
relationship between coordination number (z) and PSD exponent (n) — i.e. one equation 
for 2 unknowns. How can a second equation be found?  To answer this, consider trapping 
of a wetting phase during drainage (say, at the end of an oil-water or gas-water capillary 
pressure measurement). Symmetry arguments can be used to show that the number 
fraction of trapped pores at the end of drainage is given by:  
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where Rt refers to the radius at which hydraulic continuity of the wetting phase is lost — 
that is to say, wetting phase trapping occurs at a capillary pressure Pct~1/Rt.  Once again, 
assuming a power-law PSD, this can be rewritten as: 
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(Note —it may be simpler to understand the symmetry argument if one considers the 
initial stages of a pure “bottom-up” imbibition process, where the smallest oil-filled pores 
in a network are displaced by water via film flow).  
 
If Rt can be determined, then (6) is the missing second relationship linking coordination 
number and PSD exponent. The former can now be eliminated from equations (4) and (6) 
to give: 
       (7) 1
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111
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n RRRR
which can be solved uniquely for n, given Rmin, Rmax, Rp and Rt.  Once n has been found, 
then z can be determined from (4) or (6).   
 
The main assumptions in this method are the following: (i) that the porous medium can 
be approximated by a homogeneous network model in the first place, and (ii) that the 
network model is of a sufficient size to adequately make use of the results from 
percolation theory.  The distribution of pore size should also either be random in space or 
any local spatial correlation structure - of length l, say - should be small compared with 
the system size, L (i.e. l <<L). Whilst point (i) above is a matter for debate, point (ii) is 
simply a matter of required accuracy. This will be discussed later.  

 



SCA2002-25 6/14 

 
Having solved for coordination number and PSD exponent, attention next focuses upon 
determining the volume exponent (ν) — where the volume of a pore is given by V(r)~rν. 
Now, the nonwetting phase saturation can be calculated at any capillary pressure (~1/R) 
for a fully accessible network from the integral: 

)(
)(

)( 1
min

1
max

11
max

min

)(

)(

max

max

++++

++++

+

+

−
−

==

∫

∫
νν

νν

ν

ν

nn

nn

R

R

n

R

R

n

nw RR
RR

drr

drr
RS     (8) 

For invasion percolation simulations, however, an accessibility effect exists at low 
nonwetting-phase saturations.  To circumvent this difficulty, equation (8) must be used at 
high nonwetting-phase saturations — (1-Swr) for example, where Swr refers to the residual 
wetting phase saturation.  Hence, the volume exponent can be obtained by solving: 
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where ν is the only unknown remaining. 
 
Having described the background to the new methodology, the analysis will next be 
applied to a series of network simulations of mercury injection, where the data is no 
longer analytic in nature. 
 
APPLICATION TO INTERCONNECTED NETWORKS 
To investigate this issue, a number of different network simulations were undertaken 
using a wide range of (z, n, ν) parameter combinations. These are listed in Table 2. 
Sensitivities to network size, random number generator seed, and capillary pressure step-
size were also studied.  Values for Rp and Rt were found directly from each simulation by 
noting; (i) the capillary pressure at which the nonwetting phase relative permeability first 
became non-zero (~1/Rp), and (ii) the capillary pressure at which the wetting phase 
relative permeability dropped to zero (~1/Rt). Methods for determining these radii from 
the capillary pressure data alone — without recourse to flow data — are discussed later. 
Unless otherwise stated, all simulations were run on a 30x30x30 network and 96 capillary 
pressure steps were taken.  Rmin=2µm and Rmax=50µm in all cases, although the method is 
equally applicable to any parameter values. 
 
Table 3 shows the relative % errors in Rp, Rt, and Swr (and Snwt after imbibition, see later) 
between the measured (network) values and the expected values from percolation theory. 
For Rp, Rt, and Snwt, the agreement between the actual data and theoretical predictions is 
excellent. The average relative % error between the actual and predicted values of Rt was 
only 2.52%, whilst the corresponding average error for the percolation radius (Rp) was 
only 1.49%. Note that the relative % errors for Swr are not particularly accurate — these 
residual wetting phase saturations tend to be relatively small and so any statistical effects 
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are magnified by the relative % error measure. Predicted values of Snwt were far more 
accurate, with an average relative error of 4.8% — it will be shown later that a more 
accurate prediction of volume exponent can be achieved by taking into account both Swr 
and Snwt. In Summary, these results clearly demonstrate that the analytical formulae based 
on percolation theory are directly applicable here. In general, those predictions that were 
most in error came from analysis using small (103) networks and a scan of the tabulated 
results shows that more accurate predictions of Rp and Rt could be expected as network 
size is increased.  
 
Having measured Rp and Rt from the “mock experiment” (i.e. blind simulation), attention 
next turned to the prediction of the underlying network parameter combination (z, n, ν) 
using the percolation-based analysis of Section 3. Rp, Rt, and Swr (and Snwt if available) are 
now considered to be “experimental” inputs (indeed, when the method is applied to real 
rocks, these three or four values would be measured or inferred from experiment). The 
methodology is applied as follows: 

(i)  a GoalSeek-type macro tool is used in a spreadsheet to solve equation (7) 
for the pore-size distribution exponent n, 

(ii)  equation (4) is solved for the coordination number, z.  
(iii) the GoalSeek macro is then used to solve equation (9) for the volume 

exponent, ν. 
The results of applying the procedure to all cases tabulated in Table 2 are shown in Table 
4 and Figure 3. The figure shows plots of the relative % error in the predicted values of z, 
n, and ν, compared to the actual values used in the simulations. It is clear that values for 
the predicted volume exponent, derived from Swr measurements (νpred

Swr), are not 
particularly accurate — the reasons for this have been discussed earlier.  In an attempt to 
improve upon this, imbibition simulations were performed for all cases and values of 
trapped nonwetting phase saturation, Snwt, were used to predict (νpred

Snwt). These results 
are also shown in Table 4, together with the average (νpred

Swr + νpred
Snwt)/2. 

 
The graphs presented in Figure 3 present direct visual evidence for the success of the 
percolation approach in predicting network parameters a priori. Remember that the 
simulation data was treated as “experimental”, in that the input parameters used to 
generate the resulting capillary pressure curves were assumed to be unknown — i.e. the 
predictive procedure was applied blind to the raw output data. Predicted values for 
coordination number (z) and PSD exponent (n) were found to be in excellent agreement 
with the input parameters: an average relative error of only 2.14% was found between the 
predicted and actual values for z, whilst a corresponding average relative error of only 
2.21% was found for n.  This, in effect, means that the raw capillary pressure data arising 
from any network model drainage simulation can be interrogated using the procedure 
outlined here to uniquely determine the underlying coordination number and PSD 
exponent of that network. Note also that this approach is equally valid for site and site-
bond models, where the connectivity and size distribution of pore throats could be 
similarly inferred. 
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One question remains, however — can the volume exponent (ν) be uniquely determined? 
The relative % error in the predicted volume exponent using Swr (νpred

Swr) was 19.0%, 
with νpred

Swr < ν — once again, small residual wetting phase saturations mean that any 
statistical effects are magnified by the relative % error measure and so it is not 
particularly surprising that νpred

Swr is a poor predictor.  Rather surprisingly, the relative % 
error in νpred

Snwt — the predicted volume exponent using the trapped nonwetting phase 
saturation after imbibition — was equally poor (18.98%, with νpred

Snwt > ν).  As this 
prediction comes from analysis involving Snwt, which is itself predicted relatively 
accurately by the analysis (only 4.8% relative error), then the poor predictions of ν using 
νpred

Snwt must simply be a consequence of the power-law formulation expressed in the Snwt 
equation analogous to (9) (this issue is currently under closer examination).  All is not 
lost, however: the arithmetic average of the two volume exponent predictors (νpred

Swr and 
νpred

Snwt) gives an extremely accurate prediction of the actual simulation value.  Indeed, 
the average relative error is only 3.32% (and, in some cases, the relative error can be as 
low as 0.5%).  
 
This method has been used to produce the sample relative permeability predictions shown 
in Figure 4.  These correspond to cases (1), (5), and (7) from Table 2.  The results are 
excellent in all cases. 
 
APPLICATION TO A CLASTIC SAMPLE 
Having verified the predictive methodology using mock data, attention next turned to its 
application to gas-oil displacements in real rock samples.  This work is still in progress 
but the first example is presented here.  Experimental mercury injection capillary 
pressure data and residual phase saturations were examined in light of the theory 
presented earlier. Values for Rmin, Rmax, Rp, and Rt were identified, and equation (7) was 
solved for the PSD exponent (n). Equation (4) was then solved for coordination number 
(z), and the residual wetting phase saturation was used to derive a volume exponent (ν) 
using (9).  A comparison between the measured and predicted relative permeabilities is 
shown in Figure 5 and the agreement is excellent.  An optimised conductivity exponent 
of 3.8 was used in the simulation (although varying this parameter between 3.5 and 4 
gave curves that were very closely grouped). 
 
CONCLUSIONS AND FUTURE WORK 
A powerful new approach to pore-scale prediction of two-phase relative permeability has 
been presented in this paper. Some percolation-based analysis has been used to produce a 
set of 2 simultaneous equations involving the system coordination number (z) and the 
pore-size distribution exponent (n).  We have shown that these equations can be solved 
uniquely for the two network parameters concerned and, subsequently, that a simple 
residual saturation can be used to derive a unique volume exponent (ν).  
 
The method is extremely simple and utilises 4 capillary entry radii that could be inferred 
from routine measurements (maximum and minimum capillary entry radii, Rmax and Rmin, 
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together with 2 percolation radii, Rp and Rt).  Values for Rp and Rt are easily found from 
“mock experimental” (i.e. blind simulation) data by noting; (i) the capillary pressure at 
which the nonwetting phase relative permeability first becomes non-zero (~1/Rp), and (ii) 
the capillary pressure at which the wetting phase relative permeability no longer exists 
(~1/Rt). Swr and Snwt are found similarly. However, this requires knowledge of the 
associated relative permeabilities, and methods for determining these radii from the 
capillary pressure data alone — without recourse to flow data — would be highly 
desirable when applying the method to experimental data.  
 
Future work will focus on precisely this issue, although some thought has already gone 
into this. Firstly, a value for Rp could be determined directly from the slope of a capillary 
pressure curve  (it corresponds to the peak in the so-called “pore-size distribution” 
function produced by commercial porosimeters). Secondly, it should be possible to 
estimate Rt and Srw from a 2-phase drainage capillary pressure curve or even from MICP 
data (Cf. the R-plot analysis and “kink saturation” discussed in paper SCA 2001-15 — 
this, rather surprisingly, appears to correlate well with Srw). Snwt could be found from a 
trapped gas saturation measurement, 2-phase imbibition capillary pressure curve, or 
possibly mercury extrusion data.  Finally, although Rmax and Rmin are rather well 
constrained, additional checks are required to ascertain that the chosen values are 
consistent with other macroscopic measures (for example, network simulations should 
reproduce the ratio of Kabs to Knw @ Swr observed experimentally) 
 
In fact, even if no 2-phase data or direct endpoint saturations are available, it may still be 
possible to derive a unique network parameter combination from a mercury intrusion-
extrusion cycle alone. This could then be used to construct an approximate network 
analogue of the particular experimental sample and a suite of relative permeability 
predictions could be made.  Although this cost-effective approach based upon mercury 
intrusion data may have its limitations (i.e. correlations between 2-phase residual 
saturations and mercury residuals would have to be either measured or assumed), it is, 
nevertheless, based upon sound physical principles and should be a useful addition to the 
list of existing methods for relative permeability prediction.  
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Table 1. Different bond networks satisfy the equation Z.Pth=d/(d-1). In the tables 

below, Pcb is equivalent to Pth. 
 

Network Z Pth Z. Pth 
Honeycomb (2D) 3 0.6527 1.96 
Square (2D) 4 0.5 2 
Kagome (2D) 4 0.522 2.088 
Triangular (2D) 6 0.3473 2.084 
Diamond (3D) 4 0.3886 1.55 
Cubic (3D) 6 0.2488 1.49 
BCC (3D) 8 0.1795 1.44 
FCC (3D) 12 0.198 1.43 

 
 
Table 2.  A list of network parameter combinations used in the present study 
 

RUN Z n ν Net. Size Seed Pc Steps
1 6 0 2 303 21 96
2 0 2 303 21 96
3 0 303 21 96
4 6 303 21 96
5 2 303 21 96
6 6 2 303 21 96
7 303 21 96
8 4 0 2 21 96
9 4 0 2 21 96

10 4 0 2 21 96
11 4 0 2 21 96
12 4 0 2 103 21
13 4 0 2 153 21
14 4 0 2 203 21
15 4 0 2 303 21
16 6 0 2 303 192
17 6 0 2 303 192
18 6 303 192
19 6 303 192
20 303 192
21 303 192

 

4
4 1

-0.99 1
4 -0.99

3
4 3 1

103

153

203

403

192
192
192
192

12
23

-0.99 1 12
-0.99 1 23

4 3 1 12
4 3 1 23
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Table 3 % Relative Errors in predicted percolation radii and residual saturations 

RUN Rp % Rel Error Rt % Rel Error Swr % Rel Error Snwt % Rel Error
1 0.00 0.00 22.73 5.70
2 0.00 2.50 35.94 3.25
3 0.00 2.50 16.35 5.08
4 0.35 0.44 9.80 5.23
5 0.92 3.99 87.50 0.77
6 0.06 0.40 12.80 6.27
7 0.09 0.33 8.84 5.63
8 6.25 10.00 15.63 1.90
9 1.56 0.00 45.31 5.15

10 3.13 7.50 31.25 5.28
11 1.56 0.00 37.50 4.07
12 7.19 10.00 17.19 1.63
13 0.62 1.00 43.75 4.74
14 3.13 7.50 32.81 5.42
15 0.00 2.50 35.94 3.52
16 0.79 0.00 27.27 5.35
17 0.53 2.14 31.82 6.60
18 1.86 0.44 13.73 4.18
19 2.57 0.44 13.73 6.10
20 0.36 0.33 10.20 7.66
21 0.36 0.84 9.18 7.21

Ave. 1.49 2.52 26.63 4.80

 
 

Table 4 % Relative Errors in predicted values of underlying network parameters 

                

RUN Z
Rel % Error

(nave-n)
Rel % Error

ν Swr

Rel % Error
ν Snwt

Rel % Error
ν ave

Rel % Error
1 0.00 0.00 8.50 13.50 2.5
2 1.25 2.00 20.00 11.50 4.25
3 1.25 2.00 20.00 19.00 0.5
4 0.00 0.00 4.00 10.00 3
5 1.25 1.01 17.00 3.50 6.75
6 1.00 0.50 14.50 20.00 2.75
7 1.00 1.00 40.00 44.00 2
8 12.50 0.00 22.50 30.50 4
9 1.50 2.00 20.00 13.00 3.5
10 0.75 9.00 21.00 11.50 4.75
11 1.50 2.00 16.50 8.50 4
12 13.75 1.00 24.00 33.00 4.5
13 0.00 2.00 20.50 14.50 3
14 0.75 9.00 21.50 12.00 4.75
15 1.25 2.00 19.50 12.50 3.5
16 1.50 1.00 10.50 17.00 3.25
17 2.00 0.00 9.00 12.50 1.75
18 1.33 0.50 8.00 12.00 2
19 1.33 1.01 5.00 9.00 2
20 0.75 4.00 38.00 45.00 3.5
21 0.25 6.50 39.00 46.00 3.5

Ave 2.14 2.21 19.00 18.98 3.32
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              (a)                  (b) 

Figure 1.  Cluster structure at percolation threshold during primary drainage — the 
largest pores are filled first regardless of their position in the lattice (i.e. these 
figures refer to pure top-down bond percolation simulations). (a) 20 x 20 
lattice, (b) 50 x 50 lattice. 

 
 
 
 

  
              (a)                  (b) 

Figure 2.  Cluster structure at percolation threshold during primary drainage — in this 
case, the largest pores are filled first but they must have hydraulic continuity 
to the inlet (LH) face of the lattice (i.e. these figures refer to invasion 
percolation simulations). (a) 20 x 20 lattice, (b) 50 x 50 lattice. Notice that the 
spanning clusters are identical to those in Figure 1. 
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Figure 3.  Plots of % Relative Error of z, n, v from 21 network simulations (see Table 2). 

Errors are those between mock experimental values (actually obtained from 
numerical simulations) and analytical predictions. Three different predictions 
of ν were made (νpred

Swr, νpred
Snwt and νave=(νpred

Sw r  + νpred
Snwt)/2).  
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      Case (1)      Case (5) 
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Case (7) 

Figure 4.   Predicted vs “mock experimental” (i.e. blind simulation) gas-oil relative 
permeabilities. These correspond to cases (1), (5), and (7) in Table 3. 
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Figure 5. Comparison between experimental and predicted gas-oil relative permeabilities. 
 

 




