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INTRODUCTION 
Petrophysical properties of porous sedimentary rocks depend on both the confining 
pressure, Pc, and the pore pressure, Pp.  For example, if hysteresis is neglected, a property 
such as the permeability k can be expressed as some function .  If the 
permeability can be expressed as a function of the single parameter , i.e., 

, we then say that it follows an effective stress law, with  being the 
effective stress coefficient, and  being the effective stress.  For a rock whose 
mineral phase consists of a single mineral, say quartz, the effective stress coefficient is 
not expected to exceed unity [1].  However, Zoback and Byerlee [2] showed that the 
effective stress coefficient of some clay-rich sandstones can in fact be as high as 3-4.  
Walls and Nur [3] found that  increased with clay fraction, and reached values as high 
as 7 for sandstones with volumetric clay fractions of 20%. 
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To explain this behavior, Zoback and Byerlee proposed a model in which the rock 
consists of quartz, permeated with cylindrical pores that are lined with a shell-like layer 
of clay.  As the inner clay layer is more compliant than the outer quartz layer, such a rock 
should be more sensitive to changes in pore pressure than to changes in confining 
pressure.  Although this model has frequently been invoked qualitatively, a quantitative 
discussion of this model does not seem to have been given.  A related model is one in 
which the clay is in the form of particles that are only tangentially attached to the pore 
walls.  In this paper, we utilize newly-developed solutions of the equations of elasticity 
for these models, along with previously available solutions for viscous fluid flow in these 
geometries, to find the effective stress coefficients.  Using recently collected data on the 
elastic deformation of clays [4], which show clays to be about twenty times more 
compliant than quartz, we find that both models do indeed yield effective stress 
coefficients that increase with increasing clay content.  The second model gives higher 
values of , which are in somewhat closer agreement with those found in the literature. kn
 
REVIEW OF RESULTS FOR CLAY-FREE ROCKS 
Before describing the two models used in our study, it is worth reviewing the results for a 
rock consisting of a single mineral.  If the pores are assumed to be cylinders of radius a, 
flow through each pore will be governed by Poiseuille's law [5], which states that the 
hydraulic conductance of the tube is proportional to .  Other factors will influence the 4a
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overall permeability, such as the interconnectedness of the pores, but these are assumed 
not to vary with stress.  Hence, to find the dependence of permeability on stress, we need 
only find the variation of the pore radius a with stress, as shown more rigorously below. 
 
It follows from the expression  that the effective stress coefficient for 
permeability, , can be defined as the ratio of the sensitivity of permeability to changes 
in pore pressure, to the sensitivity of the permeability to changes in confining pressure: 
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If k depends on the stresses only through the pore radius  a, use of the chain rule gives 
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Hence, according to this model, the effective stress coefficient for k is essentially the 
same as that for a (and, for the pore volume).   
 
If the elasticity equations are solved for a cylindrical pore in an elastic body, it is found 
that the effective stress coefficient depends on the porosity φ and the Poisson ratio ν of 
the medium, but never exceeds unity [5,6].  For simplicity, and with little loss of 
generality, it is convenient to assume a typical value of ν , such as 0.25, in which case 

(2 ) / 3kn φ= + .                                                           (3) 

If the pores were assumed to be elliptical rather than cylindrical, the effective stress 
coefficient would increase, approaching unity in the limit of thin crack-like pores, but 
never exceeding it [5,6].  Hence, it seems that values of  should only be expected 
to occur in a sandstone if it contains clay.  Indeed, the data collected from various sources 
by Kwon et al. [7] shows that  increases almost linearly with clay content, reaching 
values as high as 7 when the clay content is 20%. 

1>kn

kn

 
DESCRIPTION OF MODELS FOR CLAY-RICH SANDSTONES 
To explain the results mentioned above in a quantitative way, two different pore-clay 
models are examined here.  The first model is the Zoback and Byerlee shell model, in 
which the rock consists mainly of a single mineral, say quartz, permeated with cylindrical 
pores that are lined with shell-like layer of clay (Fig. 1a).  In the second model, the rock 
again consists mainly of quartz permeated with cylindrical pores, but with the clay 
situated as particles that are touching, but only weakly coupled to, the rock matrix (Fig. 
1b).  These two somewhat idealized models may be expected to represent extreme cases 
with regards to the extent of coupling between the clay and rock.  
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Model 1 
In this model, the clay is equally distributed over all of the pore walls, forming a thin 
layer (Fig. 1a).  As in the clay-free case, the permeability will depend only on the radius 
of the pore tube, a, and the effective stress coefficient will be given by the ratio shown in 
equation (2).  The dependence of a on the two applied stresses will of course be different 
in this case. 
 
If a composite elastic medium such as this is subjected to a confining pressure  along 
its outer boundary 

cP
br = , and a pore pressure P  along its inner boundary p ar = , the 

radial displacement u will be a function only of the radius, r.  The displacement will have 
the form rBAru , where A and B are constants [8].  Different values of A and B 
will apply in the clay region, 

/+=
cra << , and in the rock region, brc << .  The values of 

these four constants are found by applying the following boundary conditions: 
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where rrτ  is the radial normal stress.  This stress is related to the displacement through  
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where K and G are the bulk and shear moduli.  These four conditions allow the four 
constants, , to be found in terms of the four elastic moduli, the 
porosity, the clay fraction, and the two applied pressures.  The resulting expressions are 
lengthy, and the algebraic details can be found in [9]. 
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Model 2 
In this model the clay exists in the form of particles that are tangentially connected to the 
pore walls.  In this configuration, the clays will have essentially no influence on the effect 
that the confining pressure has on the pore geometry.  An increase in confining stress will 
cause the pore channel to deform in the same manner as if the clay were not present, and 
furthermore will have essentially no influence on the geometry of the clay particles.  The 
pore pressure will cause the pore wall at ar =  to expand radially, exactly as in the clay-
free case.  But the pore pressure, which acts over essentially the entire outer boundary of 
the clay particle, will also cause a uniform hydrostatic compression of the clay particle.  
Hence, this model does not require the solution to any new elasticity problems. 
 
In this model, the permeability will depend on the geometry of the region of the pore that 
is not occupied by the clay particles.  Hence, we need a solution for the viscous flow 
problem within the open pore space.  In order to yield a tractable, two-dimensional flow 
problem, we assume that the clay exists as a solid cylinder of radius c, touching the pore 
wall.  (Alternative models could include, for example, spherical clay particles attached to 
the pore walls at random locations.)  The region available for fluid flow is then the region 
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between two eccentric cylinders, of radii a and c, in the limiting case in which the inner 
cylinder is touching the outer one.  Formally, the derivatives appearing in equation (1) 
must then be calculated as 
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and similarly for the confining pressure.  The partial derivatives of a and c with respect to 
pressure are already known, as explained in the previous paragraph.  The derivatives of k 
with respect to a and c are found by differentiating the solution to the viscous flow 
problem, which is given in [10] in the form of a complicated infinite series.  After making 
several simplifications and approximations to this solution, the details of which can be 
found in [9], we eventually arrive at the following expression for the effective stress 
coefficient for model 2: 
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where φ is the porosity of the rock,  is the clay fraction (defined here as the volume of 
clay divided by the total volume of solids), and 

Fc

clayrock GG /=γ  is the stiffness ratio. 
 
RESULTS AND DISCUSSION 
 
Model 1 
The effective stress coefficient predicted by model 1 is plotted in Figure 2a as a function 
of clay fraction.  The porosity is taken to be 20%, and, the Poisson's ratio of both the rock 
and the clay are taken to be 0.25.  The different curves represent different values of the 
stiffness ratio.  At zero clay content, all curves begin at the value 0.733, given by 
equation (3).  In the limiting case on which the stiffness ratio is 1, i.e., the clay and rock 
have the same elastic properties, then the system is equivalent to a uniform rock without 
clay, and the effective stress coefficient is consequently insensitive to clay fraction.  For 
higher stiffness ratios, the effective stress coefficient increases with clay content, at a rate 
that increases with increasing stiffness ratio.  However, no combination of parameters 
seem to be capable of yielding values of  that are greater than about, say, 3 or 4. kn
 
Model 2 
Again, a rock with 20% porosity is assumed, and the effective stress coefficient nk is 
plotted as a function of clay fraction, Fc, at different stiffness ratios, γ (Figure 2b).  The 
results are qualitatively similar as those of model 1, in that the coefficient nk increases as 
clay fraction increases, with the effect more enhanced for higher values of the stiffness 
ratio.  But the numerical values of nk are larger for model 2 than for model 1.  For 
example, for a stiffness ratio of 20 and a clay fraction of 0.2, model 1 yields an effective 
stress coefficient of 1.93, whereas model 2 predicts a value of 4.60. 
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Experimental Data from Literature 
Figure 3 shows the predictions of our two models, compared with some experimental 
data from the literature.  Data for different clay-bearing sandstones collected in [7] from 
various sources [2,3,11,12,13] are shown in the figure, along with our model results.  
Note that each experimental data point corresponds to a rock having a different porosity; 
in order to compare the data to the model predictions, we choose a porosity of 20% for 
the model calculations.  Similarly, we use the same stiffness ratio of 20:1 to generate our 
theoretical curves, although the actual values for the rocks probably varied from this 
value.  Nevertheless, we see that the both models give the same trend as is observed in 
the data.  In particular, model 2 gives a reasonable fit.  This fit could be greatly improved 
by assuming a stiffness ratio of 30, which is not unreasonable. 
 
CONCLUSIONS 
We have discussed the implications of two conceptual models for clay-rich sandstones.  
The first model is the shell model proposed by Zoback and Byerlee [2], in which the 
clays line all of the pore walls, and the second is a model in which the clay exists as 
particles tangentially attached to the pore walls.  Both models yield effective stress 
coefficients that increase with increasing clay content.  The rate of increase depends on 
the stiffness ratio, clayrock GG /=γ .  Using realistic values of the stiffness ratio, model 1 
cannot yield values of  larger than about 3 or 4.  Model 2, on the other hand, can give 
much higher values, and can roughly fit the data set collected by [7].   

kn
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Figure 1.  Cross sections of cylindrical pore clay models: (a) pore lined with shell-like layer of 
clay, (b) clay forming a cylindrical rod sitting along side wall of the pore.
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Figure 2.  Effective stress coefficient nk, as a function of clay fraction Fc for different stiffness ratios γ; for
the two models. 

Figure 3.  Effective stress coefficient nk, as a function of clay fraction Fc.  The points refer to data from 
literature and the lines refer to results from the models.
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