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ABSTRACT 
This paper reports on a numerical study of the effect of sample shape on spontaneous 
imbibition curves (recovery versus time) in a water-wet, laboratory scale system. 
Characteristic lengths based on the surface area open to imbibition and distance to the 
corresponding no-flow boundary, have been tested experimentally by Ma et al. for 
cylindrical samples with configurations having the following open surfaces: one-end, 
both-ends, the radial surface, and all surfaces. The present study addresses one-
dimensional linear, and radially and spherically symmetric cases, and thus includes the 
first and third cases investigated by Ma et al.  Also considered are annular-radial samples 
and hollow-spherical samples for a wide range of aspect ratio (inner radius divided by 
outer radius) with inner, outer, and both surfaces open. The numerical results show that, 
although the Ma et al. correlation is satisfactory within expected experimental error, 
annular and hollow spherical shapes, particularly for either the inner or outer face open, 
give systematic differences in shape of the spontaneous imbibition curves. Only minor 
differences in curve shape are obtained when both faces are open. The maximum 
differences occur for the smallest aspect ratio. The differences approach zero as the 
aspect ratio approaches one. An extension of the correlation, that weights the distance 
from the open surface with the local volume, gave close correlation of the simulated 
results for all cases.  The results identify conditions under which differences in curve 
shape should be readily detectable by experiment. 
 
INTRODUCTION 
Numerical simulation studies can often both supplement and guide experimental work, 
thereby making the experimental programs more efficient. Furthermore, the ability to 
match experimental data provides confidence in using simulation to predict behavior for 
conditions that lie outside the range of experimental data used to develop empirical 
correlations. Whereas experiments for imbibition can take up to many months, numerical 
experiments can be run in a matter of minutes. By simulating experiments before they are 
run physically, test times can be evaluated, schedules for data collection can be 
developed, and physical configurations that may produce novel results can be evaluated. 
Numerical studies also allow mechanisms to be examined individually, thereby 
facilitating a fuller understanding of complex physical phenomena.  



Morrow and Mason [1] have recently reviewed published work regarding displacement 
of oil by spontaneous imbibition of water. Several developments have been made in 
scaling of experimental data for spontaneous imbibition.  Application of the scaling 
group originally proposed by Mattax and Kyte [2] is subject to highly restricted 
conditions essentially set out in the classic work on scaling by Rapoport [3]. Departure 
from one of these conditions, that the model and the prototype have similar geometry, is 
the main subject of the present paper.  
 
Ma et al. [4] showed that a large body of spontaneous imbibition data for very strongly 
water-wet conditions could be correlated in the form of recovery expressed as a fraction 
of the final recovery versus dimensionless time.  All of the imbibition data gave 
production curves of close to the same shape and they showed that these curves could be 
fitted with a form of Aronofsky [5] model. The best fit to all of the correlated data was 
given by (Viksund et al. [6]) 
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Here t is time, k  is permeability, φ is porosity, σ is interfacial tension, µw is the water 
viscosity, and µo is the oil viscosity. LC is a characteristic length that compensates for 
differences in sample size, shape, and the position of the open surface(s). Hereafter, (LC)2 
will be referred to as the scale factor. 
 
Ruth et al. [7] demonstrated that the basic shape of the imbibition curves could be 
simulated for linear systems using a conventional, finite-difference scheme. In the present 
paper, this scheme is extended to radial and spherical geometries, including annular-
radial and hollow-spherical systems with open faces on either both or only one of the 
inner and the outer surfaces. The present work has two main objectives.  The first is to 
identify conditions under which imbibition curve shape is significantly affected by 
sample shape and which faces are open. The second is to test the length scale correlation 
proposed by Ma et al. [4] for a wide range of geometries. 
 
FORMULATION OF THE NUMERICAL SIMULATOR 
The simulator, based on a conventional, explicit, finite-difference scheme, has been 
described in Ruth et al. [7]. A fundamental feature of the model is the definitions of 
transmissibilities at interfaces between grid-blocks. The modification to accommodate 
radial and spherical systems was simply to account for the specific coordinate system in 



the definitions of these transmissibilities. In all cases, the grid-blocks were constructed 
such that, except for those on the face(s) of the sample, they had equal volumes. Grid 
blocks on the face(s) had zero volumes. All simulations reported in the present paper 
used 298 grid blocks. Additional grid blocks lead to only marginal differences in the 
simulated production curves. For any particular combination of sample shape and open 
face(s), identical results for the scaled production curves are ensured, regardless of 
sample size.   Thus, the basic geometric condition derived by Rapoport [3] for scaling of 
two-phase flow is automatically satisfied by the computational scheme.  
 
TEST PARAMETER SPECIFICATIONS 
The present study used the same functions as those used previously by Ruth et al. [7]. 
The relative permeabilities were assumed as Corey [8] functions  
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Here Sw is the water saturation So is the oil saturation and 1-Sro is the movable fraction of 
the oil. The initial water saturation is zero. This assumption was made to allow direct 
comparison with previous work. The endpoint relative permeabilities are denoted by k roe 
and k rwe while no and nw are exponents that control the shapes of the curves. The capillary 
pressure (Pc) curve was assumed to be logarithmic in form, and related to the capillary 
pressure at which residual nonwetting phase is attained (Pct) by  
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where B is a scale parameter. The values of the test parameters are given in Table 1.  
 
Table 1: The Test Parameters 
 

Variable Value Units Variable Value Units 
φ 0.215 - k 600.0 mD 
L 5.08 Cm D 3.18 cm 
µo 1.00 Cp µw 1.00 cp 
kroe 1.0 - krwe 0.04 - 
No 1.756 - nw 2.018 - 
Sor 0.43 - Swi 0.0 - 
Pct 2.29 Kpa B 5.255 - 



 
The rock properties are typical of Berea sandstone. The length (L) is for all cylindrical 
cases and the diameter (D) is for the non-annular cylindrical cases. For spherical, 
annular-radial and hollow-spherical cases, sample dimensions were calculated so that the 
pore volumes of all samples were equal. Annular and hollow samples are characterized 
by an aspect ratio, A, 
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where ri and ro are the inner and outer radius respectively. Examples of cylindrical 
samples of different aspect ratio are shown in Plate 1. The aspect ratio is ( )2/1  at the 
transition where all inside radii of the annulus are greater than the radius of a solid 
cylinder.  All hollow spheres lie outside the solid sphere when the aspect ratio is greater 
than ( )3 2/1 . 
 
The simulations were run until 95% of the moveable non-wetting phase was produced. 
Data was output at equal increments of 5% of moveable non-wetting phase saturation. 
This allowed direct comparison among all cases. All cases involved counter-current, 
spontaneous imbibition without gravity effects. 
 
COMPARISONS OF PRODUCTION CURVE SHAPES 
The first step in analyzing the numerical results was to examine the shapes of the 
production curves. In order to do this, the linear case (the radial surface and one end 
closed) was used as the reference.  All other cases were scaled. The scaling was achieved 
by calculating the average ratio of times for equal productions between any particular 
case and the linear case. When plotted, the scaled curves give a direct, visual comparison 
between the shapes of the production curves. For the chosen cylinder dimensions, 
imbibition rates for the sphere and for radial imbibition into the cylinder are respectively 
about 27 and 22 times faster than for the cylinder with one end open.  From the scaled 
curves shown in Figure 1, at early times, recovery for the sphere is slightly faster than for 
the cylinder.  The linear case is the slowest. At late times, the recovery times for the three 
geometries change to the opposite order with the radial (cylinder and sphere) results still 
showing only slight difference. The shapes of all of the production curves are essentially 
the same within expected experimental error. 
 
Figure 2 shows results for annular-radial samples with only one face, either the inner or 
the outer, open. Again the linear case is used as the basis of comparison. For the cases of 
the outer surface open, the production curve shapes fall increasingly close to the linear 
case as the aspect ratio is increased. At the limit of a very thin annulus, the sample must 
act as a linear sample. Compared to the results for radial imbibition with the outer surface 
open, the shapes of the curves for the cases where the inner surface is open show greater 
deviation from the linear case. However, the results again approach the linear case for 



high aspect ratio.  The sequence in recovery versus time curves reverses and shows 
increasingly wide separation in recovery times for recoveries above about 33% of final 
oil recovery. 
 
Figure 3 shows the results for the hollow-spherical samples. The trends are similar to 
those observed for the annular-radial cases; however, the separation at later recovery 
times for either outer surface or inner surface open are even greater for the spherical 
samples. Again, the behavior for both inner and outer surfaces open approaches the linear 
behavior as the aspect ratio approaches unity. 
 
Results for both faces open, for both annular-radial and hollow-spherical samples, are 
presented in Figure 4. Remarkably, for these cases, the shapes of the curves are almost 
identical to that for the linear case. The combination of imbibition at the two surfaces 
results in a close approximation to imbibition into a linear sample. 
 
ANALYSIS OF THE SCALE FACTOR OF Ma et al 
Ma et al. [4] proposed a scale factor that for linear, and radially and spherically 
symmetric shapes reduces to  
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Here VB is the sample bulk volume, LS is the distance from the no-flow boundary to the 
open face, and AS is the area of the open face. The results for the cases of one face-open 
are given in the second column of Table 2.  
 
In order to test the effectiveness of the scale factor, the values calculated from Eq. 7 (see 
Table 2) for various shapes were normalized with respect to the value calculated for the 
linear case. These normalized factors were cross-plotted against scale factors calculated 
by normalizing the simulated results for any shape with respect to the simulated results 
for the linear case (Figure 5). The line corresponds with 1-to-1 agreement. For both the 
radial and the spherical cases, the poorest agreement is for the zero aspect ratio and the 
outer surface open. As expected, the agreement improves as the aspect ratio increases. 
Agreement for the radial case is better than for the spherical case. The Ma et al. [4] 
correlation works very well for the cases of imbibition at the inner surface, except for the 
smallest aspect ratio, spherical case. 
 



Table 2: Scale factors for cases with one face open. 
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A NEW CORRELATION 
The Ma et al. [4] scale factor does not compensate for situations where incremental 
volumes of the sample do not have the same sizes at different distances from the open 
face. In order to account for this, the distance between any incremental volume and the 
open face can be weighted with the incremental volume and integrated over the entire 
volume. For the linear case the resulting equation for the scale factor is 
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For the radial case and the outer surface open, the result is 
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For the radial case and the inner surface open, the result is 
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The equations for the spherical cases are found in an analogous manner. The results for 
all the single face open cases are summarized in the third column of Table 2. 
 
Comparisons between the new correlation and the simulated results are shown in Figure 
6. The agreement, when compared with the Ma et al. [4] correlation, is improved for all 
except the inner surface open cases at the lowest aspect ratios. Overall agreement 
between the modified analytical scale factors and the simulated values is excellent. 
 
For completeness, the normalized scale factors are given in Table 3. 
 
FUTURE EXPERIMENTAL WORK 
The present results suggest that all three basic sample shapes (a right cylinder in linear or 
radial flow and a solid sphere) will produce curves of roughly the same shape. Given 
variations in the properties of samples, it is doubtful if the indicated differences could be 
detected by experiment. For annular and hollow samples, there is a good possibility that 
differences could be detected, particularly if flow at the inner surface is tested for low 
aspect ratios. Annular-radial samples are of special interest because they can be readily 
fabricated for a wide range of aspect ratio. They also provide a useful representation of 
combined flow in a fractured porous media.  Spherical samples are of more academic 
interest; they would be hard to fabricate, particularly in the hollow form. They were used 
here to test the limits of the correlations. 
 
CONCLUSIONS 
This paper provides a comprehensive set of numerical simulation results for one-
dimensional, spontaneous imbibition into a water-wet porous media initially saturated by 
the nonwetting phase. The simulations show large differences in rate but only slight 
changes in shape between linear (a cylinder with one end open) and radial flow (a 
cylinder with two ends closed or a sphere, and annuli and hollow spheres with both faces 
open). The simulations predict significant systematic changes in imbibition-curve shape 
with sample shape for both annular and hollow spherical samples with one face open. 
Correlation of results was tested using an existing definition of characteristic length 
(scale factor) and a new definition that compensates for changes in sample volume with 
distance from the imbibition face for radial and spherical flow. The new definition 
provided very close correlation of the simulated results.  
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Table 3: The values of the normalized scale factors calculated from simulation, the Ma et 
al. [4] correlation and the new correlation. 
Case Simulation Ma et al  New 
Linear 1.0000 1.0000 1.0000 
Radial Outer Open: A=0.0 0.0461 0.0703 0.0469 
Radial Outer Open:A=0.2 0.0434 0.0562 0.0437 
Radial Outer Open:A=0.4 0.0362 0.0422 0.0362 
Radial Outer Open:A=0.8 0.0136 0.0141 0.0135 
Radial Inner Open:A=0.2 0.2720 0.2812 0.3437 
Radial Inner Open:A=0.4 0.1116 0.1055 0.1205 
Radial Inner Open:A=0.8 0.0181 0.0176 0.0182 
Spherical Outer Open:A=0.0 0.0366 0.0744 0.0372 
Spherical Outer Open:A=0.2 0.0359 0.0594 0.0364 
Spherical Outer Open:A=0.4 0.0319 0.0437 0.0319 
Spherical Outer Open:A=0.8 0.0109 0.0117 0.0109 
Spherical Inner Open:A=0.2 1.1408 1.4842 2.0587 
Spherical Inner Open:A=0.4 0.2878 0.2729 0.3464 
Spherical Inner Open:A=0.8 0.0193 0.0183 0.0197 

Plate 1: Examples of shapes of different aspect ratio given by annular samples.  (Ratios of 
great circle diameters are used to define the aspect ratios of hollow spheres.). The first 
three have inner radii less than the radius of the solid cylinder; the fourth has an inner 
radius greater than the radius of the solid cylinder; the fifth example is the limiting case 
where the inner radius equals the radius of the solid cylinder. Cases a) to d) were studied 
in the present paper. Case e) is for illustrative purposes only. 
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Figure 1: Normalized production as a fraction of mobile oil volume versus time. The 
radial and spherical cases have been linearly transposed to best match the linear case. 
Time is in seconds (times a linear best- fit scaling factor). 
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Figure 2: The radial cases for one surface open scaled to the linear case. Production is in 
fraction of mobile pore volume. Time is in seconds (times a linear best- fit scaling factor). 
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Figure 3: The spherical cases for one face open scaled to the linear case. Production is in 
fraction of mobile pore volume. Time is in seconds (times a linear best- fit scaling factor). 
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Figure 4: Production for cases where both inner and outer surfaces are open, scaled to the 
linear case. Production is in fraction of mobile pore volume. Time is in seconds (times a 
linear best- fit scaling factor). 
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Figure 5: Correlation between the normalized scale factors predicted by the simulator and 
the values calculated by the Ma et al. correlation. L is linear; R is radial; S is spherical; O 
is outer face open; I is inner face open; 2,4,8 are aspect ratios in tenths. 
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Figure 6: Correlation between the normalized scale factors predicted by the simulator and 
the values calculated by the improved correlation. L is linear; R is radial; S is spherical; 
O is outer face open; I is inner face open; 2,4,8 are aspect ratios in tenths. 




