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ABSTRACT 
The recently developed predictive model “DeProF” (acronym for “Decomposition into 
Prototype Flows”) considers steady-state two-phase flow in porous media as an in-parallel 
combination of three flow patterns, namely Connected-oil Pathway Flow, Ganglion 
Dynamics and Drop Traffic Flow. The key difference between these prototype flow 
patterns is the degree of disconnection of the non-wetting phase ('oil') which, in turn, 
affects the relative magnitude of the rate of energy dissipation caused by capillary effects 
compared to that caused by viscous stresses. The observed flow is usually a mixture of the 
basic prototype flows. Each flow pattern prevails over mesoscopic -scale regions of the 
porous medium (ranging from a few to several hundred pores), whereas the macroscopic 
flow is homogeneous. 
The predictive capability of the DeProF model was used to investigate whether optimum 
operating conditions appear in steady-state two-phase flow in pore networks. A new 
macroscopic dependent variable is determined, namely the energy utilization factor. This 
variable is defined as the ratio of the reduced o/w flow rate ratio over the reduced 
mechanical energy dissipated; it represents a measure of the efficacy of the physical 
process in terms of oil transport. 
Using DeProF, simulations were carried out over the domain of capillary number, Ca, and 
oil-water flowrate ratio, r, in which two-phase flow is sustainable and for three systems of 
oil/water/pore network. The results show that, for every system, there exist a continuous 
line (locus) in the (Ca, r) domain on which the energy utilization factor attains a local 
maximum. 
 
 
INTRODUCTION 
Two-phase flow in porous media (2fFPM) occupies a central position in such physically 
important processes as enhanced oil recovery, the behavior of liquid organic pollutants 
near the source in contaminated soils, etc. It has been experimentally observed [1,2] that 
during two-phase flow the disconnected oil contributes significantly (and in certain cases 
of practical interest even exclusively) to the flow. Furthermore, the flowrate vs pressure 



gradient relation is found to be strongly non-linear, and to be strongly affected by the 
physical parameters that pertain to the fluid-fluid interfaces. 
 
A recently developed theoretical model [3,4,5,6], predicts the relative permeabilities using 
the concept of Decomposition in Prototype Flows (DeProF); it accounts for the pore-scale 
mechanisms and the network wide cooperative effects, and is sufficie ntly simple and fast 
for practical purposes. The sources of non-linearity (which are caused by the motion of 
interfaces) and other complex effects are modeled satisfactorily. The quantitative and 
qualitative agreement between existing sets of data and the corresponding theoretical 
predictions of the DeProF model is excellent [5,6]. 
 
In the DeProF model it is assumed that in the most general case the macroscopic flow can 
be decomposed into the two prototype flows, Connected-oil Pathway Flow (CPF) and 
Disconnected Oil Flow (DOF). The latter comprises Ganglion Dynamics (GD) and Drop 
Traffic Flow (DTF), regimes which have been observed experimentally [1,2]. Each 
prototype flow has the essential characteristics of the corresponding flow patterns in 
suitably idealized form, and so the pore scale mechanisms are incorporated in the prototype 
flows. The cooperative effects among ganglia and drops are also incorporated in DOF, by 
making suitable use of a modified version of the effective medium theory [7]. 
 
Using the DeProF model, one can obtain the solution to the problem of steady-state two-
phase flow in porous media (SS2f FPM) in the form of the following transfer function 
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µ~Ca = ; wµ~  is the viscosity of water, wU~  is the superficial velocity of water, and 

ow?~  is the interfacial tension), wo q~/q~r =  is the oil/water flowrate ratio, wo µ~/µ~? =  is the 

oil/water viscosity ratio, 0
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R?  are the advancing and receding contact angles and xpm 
is a parameter vector composed of all the dimensionless geometrical and topological 
parameters of the porous medium affecting the flow (e.g. porosity, genus, coordination 
number, normalized chamber and throat size distributions, chamber-to-throat size 
correlation factors, etc.). Note that in equation (1) Sw is not considered to be an 
independent variable; actually, Sw is one of the dependable variables in the system of 
DeProF equations. 
 
Basics of the DeProF Model 
In the general case of SS2fFPM of Figure 1(a), the physical system of the porous medium, 
oil and water is characterized by the values of the physicochemical parameters, namely 
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flow direction, z~ , with constant flowrates oq~  and wq~ , so that the operational 
(dimensionless) parameters Ca & r have constant va lues.  



In the CPF region the oil retains its connectivity and flows with virtually one -phase flow. 
The porous medium volume fraction occupied by the connected oil is denoted by β . The 
DOF regime is defined as the region composed of the rest of the unit cells, so the DOF 
volume fraction equals ( )β−1 . Water is the wetting phase and always retains its 
connectivity. DOF implicitly represents the connected-water pathway flow. A microscopic 
scale representation (a snapshot) of a typical DOF region is shown in Figure 1(b). An oil 
ganglion having a typical “cruising” configuration [5,6,8] is shown at the center. All the 
cells that accommodate parts of this (or any other) oil ganglion are called ganglion cells 
and are demarcated with a thick dashed line. The rest of the cells in the DOF region are 
cells containing water and oil drops. These cells comprise the regions of the GD and DTF 
domains respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)      (b) 
 
Figure 1 (a) “Actual” flow and its theoretical decomposition into prototype flows: CPF & 
DOF. (b) A microscopic scale representation (snapshot) of a DOF region. An oil ganglion 
of size class 5 is shown. For simpler representation, all cells are shown identical and the 
lattice constant is shown expanded. The dashed line separates the GD cells domain and the 
DTF cells domain. In reality chambers and throats have prescribed size distributions. 
 
 
The fraction of all the ganglion cells over all the DOF region cells is denoted by ? , and is 
called the GD domain fraction. The DTF domain fraction in the DOF region equals ( )ω−1 . 
Sw, ß and ? are called flow arrangement variables (FAP) because they give a coarse 
indication of the prevailing flow pattern. One of the objectives of DeProF is to determine 
the values of wS , ß and ? that conform with the externally imposed conditions. The overall 
flowrates are partitioned in the prototype flows; CPF,oq~ , DOF,oq~  are the mean oil flowrates 
in CPF, and DOF and DOF,wq~  the mean water flowrate in DOF. The following physical 
quantities are also assigned to the prototype flows: the reduced oil mean superficial 
velocity in CPF, defined by oCPF,oCPF,o q~q~U =  and the reduced oil and water mean 
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superficial velocities defined by mDOF,mDOF,m q~q~U = , where m=o,w. It is assumed that oil 
ganglia and drops move with equal superficial velocities. 
The flow analysis is carried out at two length scales, a macroscopic scale (1012 pores, or 
more) and a microscopic scale, and produces a system of equations that includes 
macroscopic water and oil mass balances, flow arrangement relations at the macroscopic 
scale, equations expressing the consistency between the microscopic and macroscopic 
scale representations in the DOF region and an equation that is obtained by applying 
effective medium theory to the “equivalent one -phase flow” in the DOF (GD&DTF) region 
-implicitly representing the transfer function for this region [5,6]. The system is closed by 
imposing an appropriate type of distribution function for the ganglion volumes, which is 
dictated by the physics of ganglion dynamics. 
 
For any given set of ( )pm

0
R

0
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of the values of (Sw, ß, ?), are determined. By assuming equal probability for each 
admissible solution and averaging over their domain, a unique solution for the macroscopic 
flow is obtained, in the form of equation (1). 
 
Macroscopic interstitial physical quantities, such as the magnitude of the domain of 
physically admissible solutions, the interfacial area per unit volume, the mechanical power 
dissipation per unit volume, the degree of disconnectedness of the non-wetting phase, and 
the flow parameter domain over which two-phase flow is sustained, the reduced superficial 
velocity of o/w interfaces, and the fraction of interface transport through DTF, can be 
computed in a straightforward manner. 
 
We will use the predictive capability of the DeProF model to investigate whether optimum 
operating conditions with respect to oil flowrate exist in steady-state two-phase flow in 
pore networks. By ‘optimum operating conditions’ we mean those values of Ca and r (the 
operating parameters of the system) for which the ratio of oil flow rate over the mechanical 
power dissipation takes one (or many) locally maximum values. To this end, we introduce 
a new dependent variable, namely, the energy utilization factor, fEU. This is a macroscopic 
variable defined as the ratio of the reduced o/w flow rate ratio over the reduced rate of 
mechanical energy dissipation, WrfEU = ; it is a measure of the efficacy of the physical 
process under consideration in terms of oil flowrate per unit energy cost. W is the reduced 
rate of mechanical energy dissipation in steady-state two-phase flow in pore networks; it is 
calculated [5] as the weighted sum of the reduced rates of mechanical energy dissipation in 
each prototype flow: 
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The mechanical power that is externally supplied to the system equals the rate of 
mechanical energy dissipation. Mechanical energy dissipation is caused interstitially: (a) 
by bulk viscous stresses in combination with the local rates of deformation, and (b) by 



capillary pressure in combination with the velocities of moving menisci and contact angle 
hysteresis effects. Clearly, the relative magnitude of the two contributions depends among 
other factors on the degree of disconnection of oil (the non-wetting phase). 
 



Simulations of Steady-State Two-Phase Flow in Pore Networks  
A number of simulations of steady-state fully developed 2f -flows in two-dimensional (2D) 
and three-dimensional (3D) pore networks of the chamber -and-throat type were carried out 
using the DeProF model. Three typical systems were examined, with system parameter 
values mN1025~ 3

ow
−×=γ , ??

0=45deg, ?R
0=39deg, and ?=0.66, 1.45 and 3.35. The 

simulations performed covered a rectangular domain in (Ca, r), from (Ca, rlog )=(10-7, -1) 

to (Ca, rlog )=(10-5, 2). The domain was covered in successive steps of 6105.0Ca −×=  (20 
steps in the Ca range) and of 2.0rlog =  (16 steps in the logr range).  
 
Pore Network Geometry and Topology 
The simulations were carried out for 2D and 3D pore networks of the chamber-and-throat 
type. The two lattices used in the simulations are, square in the 2D case, cubic in the 3D 
case (identical to those described in [8]). A schematic representation of the two types of 
network is shown in Figure 2. Chambers and throats are sited at the nodes and branches of 
the networks. The network lattice constant is the same in both networks. There are 5 
classes of chamber sizes and 5 classes of throat sizes in both networks and we assume that 
there is no correlation between the classes of chambers and throats. Both pore networks are 
isotropic. In all simulations, the pressure gradient (or macroscopic flow since both 
networks are isotropic) is parallel (a) to the square diagonal of the 2D network (45deg to 
the principal axes), and (b) to the cubic diagonal of the 3D network. 
 
 
 
 
 
 
 
 2D        3D 
 
Figure 2 The two dimensional (left) and three dimensional (right) pore networks used in  
the simulations. In both cases the lattice constant is shown expanded for better 
visualization. The thick arrow indicates the direction of the macroscopic flow relative to 
the principal axes of the network.  
 
 
In the 2D network all chambers are right shor t circular cylinders. The throats are cylinders 
with elliptical cross-sections. The geometry of the 2D pore network is identical to the 
geometry of the glass model pore network used in the experiments of Avraam & Payatakes 
[1,2], and in the DeProF model simulations of Valavanides & Payatakes [5,6,8].  
The volume porosity of the 2D pore network is e=0.0306 while its absolute permeability is 
k
~ =8.890 µm2. In the 3D network the chambers are spheres and the throats are right 
cylinders. The hydraulic conductances of the 3D network throats are equal to those of the 
2D network. The volume porosity of the 3D pore network is e=0.0464 while its absolute 



permeability is k
~ =8.965 µm2. The absolute permeabilities of the two networks are 

practically equal. 
 
A feature which is important to the modelling of two-phase flow in pore networks is the 
tortuosity of a typical ganglion, ?G. Moving ganglia have a tendency to become aligned as 
far as possible with the macroscopic flow direction, acquiring the so-called ‘cruising 
shape’ [6,9,10,11,12]. We assume that all ganglia have a zigzag spine that is aligned with 
the macroscopic pressure gradient. The tortuosity of a ganglion is equal to the average ratio 
of the ganglion actual length over the length projected in the macroscopic flow direction 
[6,8]. In Figure 2, using black bold lines, the typical cruising shapes of a ganglion of size 3 
in a 2D network and of a ganglion of size 4 in a 3D network are depicted. The respective 
length projections on the direction of the macroscopic flow are depicted with the dashed 
black lines. For the 2D network, 2G

D2 =χ , while for the 3D network, 

( ) 732.12/2arctansin 1G
D3 ≈=χ − . 

 
Results 
The results of the simulations are presented in Figures 3 to 6. Due to space limitations 
results are mainly presented from simulations pertaining to o/w systems with κ =1.45 and 
for the 3D network; when results for other cases are presented we make special reference. 
All simulations were carried out over the (Ca, r) domain for which two-phase flow is 
sustainable. In Figure 3 the DeProF model predictions for the reduced rate of mechanical 
energy dissipation, W, and the reduced macroscopic pressure gradient, x, are presented.  
 
In Figure 4 the DeProF predictions are presented for the flow arrangement variables (S w, 
β , and ω ) and for the reduced superficial velocity of o/w interfaces, Uow,DOF , the 
coefficient of oil fragmentation, fOF, and the fraction of interface transport through DTF, 

D,owξ  defined in [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Reduced mechanical power dissipation of the total flow, W, and reduced 
pressure gradient, x, as a function of Ca and r. The diagrams pertain to 3D pore network 
simulations for an o/w system with viscosity ratio κ =1.45.  
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Figure 4 Flow arrangement variables Sw, β  and ω , reduced superficial velocity of o/w 
interfaces, Uow,DOF , coefficient of oil fragmentation, fOF, and fraction of interface transport 
through DTF, D,owξ , as a function of Ca and r. The diagrams pertain to 3D pore network 
simulations for an o/w system with viscosity ratio κ =1.45.  
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The results for the energy utilization factor fEU (=r/W) are represented by the hump-shaped 
surfaces in the diagrams of Figures 5 & 6. It appears that for every system, there exists a 
continuous line in the (Ca, r) domain for which the energy utilization factor takes locally 
maximum values. This line is the projection of the r/W surface ridge on the (Ca, r) plane. 
Thus we conclude that for every constant value of Ca, there exists a particular value of the 
flowrate ratio, r*(Ca), for which the energy utilization factor becomes maximum. In other 
words, oil flowrate per kW of power externally supplied to the system becomes maximum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Effect of pore network dimensionality on the energy utilization factor (fEU=r/W) 
as a function of Ca and r. The viscosity ratio of the o/w system is set at κ =1.45. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Effect of the viscosity ratio, κ , on the energy utilization factor (fEU=r/W) as a 
function of Ca and r in the 3D network. 
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In the following we will try to explain this behavior using phenomenological arguments. 
First we discuss the effect of Ca on fEU with constant r. As Ca increases (r=const.), W 
decreases (see Figure 3), therefore, r/W increases. We recall here that W is the reduced 
mechanical power dissipation with respect to the mechanical power dissipation of the 
equivalent one-phase flow [ ( )k

~~~CaW
~

w
2
ow

21 µγ=φ ]. As Ca increases, the flow of oil tends 
to shift towards the CPF regime (the CPF regime expands and occupies larger parts of the 
pore network on the expense of ganglia; in Figure 4, Sw remains practically constant, β  
increases and ω decreases). Consequently, bulk viscous stresses begin to dominate 
capillary effects and therefore, the rate of mechanical energy dissipation is mainly caused 
by viscous stresses. Comparing Figures 5 & 6 one can also observe that the increase in r/W 
becomes more pronounced as κ  decreases. The reason for this is the following. The value 
of interfacial tension, ow

~γ , is practically the same in all three systems considered here, and 
therefore the relative magnitude of capillary effects, compared to bulk viscous stresses, 
increases so long as κ  decreases. Since, for the case of low κ  examined here, capillary 
effects predominate over bulk phase viscosity, the system becomes more sensitive to an 
increase in Ca (i.e. a reduction of the capillary effects) and r/W increases sharply. We have 
not carried out any numerical simulations for Ca values above 10 -5, but we expect that the 
value of r/W as Ca increases further, with constant r, tends asymptotically to a limiting 
value. 
 
The effect of r on fEU (=r/W) with constant Ca is more complicated. For every constant 
value of Ca, a unique local maximum for fEU is observed as r takes values in the domain of 
sustainable two-phase flows. For relatively small values of r ( 25.0rlog1 −<<− ), an 
increase in r causes an increase in fEU. The reason is not quite obvious. In order to increase 
r -with constant Ca- the flow rate of oil should be increased; the system seeks a new flow 
arrangement by (a) expanding the connected oil pathways (β  increases, see Figure 4), (b) 
slightly reducing the oil fragmentation with the formation of small ganglia at the expense 
of oil droplets (fOF and Uow,DOF  decrease, see Figure 4). The consequence is that the 
contribution of capillary effects to the rate of mechanical energy dissipation becomes 
significantly larger. Trading droplets for ganglia reduces the number of menisci but small 
ganglia are harder to mobilize than droplets [8]. Therefore, when r increases -at small r- the 
value of W also increases but with a small to moderate rate (Figure 3). Both r and W 
increase, but W increases slower than r and so fEU increases. The increase in fEU is more 
pronounced for κ =0.66 than it is for κ =3.35 because, as discussed in the previous 
paragraph, for κ =0.66 the system is more sensitive to capillary effects. With further 
increase in r ( rlog25.0 <− ), the fraction of porous medium occupied by connected oil, β ,  
further increases (Figure 4) and, simultaneously, the disconnected oil -in the form of oil 
droplets- tends (better “is forced”) to organize in larger oil entities, such as larger ganglia 
( ω  increases and fOF, the fraction of oil fragmentation [8], decreases sharply). For reasons 
already explained in [8], ganglia in pore networks of the type considered here are more 
difficult to mobilize and to keep moving, compared to oil droplets. (This effect would be 
further enhanced if we consider a lubricated film around the droplets.) Therefore, the 
capillary effects become even more pronounced and W increases at a rate now higher than 



before. The combined result is that fEU decreases, and the efficacy of the process is 
progressively reduced. 
 
The same behavior was observed for systems with κ  equal to 0.66 and 3.35 in both 2D 
and 3D networks. For every fixed value in Ca there exists a unique value in r, r*(Ca), for 
which fEU (=r/W) attains a local maximum value. Since r* is a continuous function of Ca, a 
continuous line ( )pm

0
R

0
A ,,,;Ca*rr xθθκ=  exists that extends over the domain of (Ca, r) 

values for which two-phase flow is sustainable. 
 
 
CONCLUSIONS 
The predictive capability of the DeProF model was used to investigate the existence of 
optimum operating conditions in steady-state two-phase flow in pore networks. By 
introducing a new macroscopic physical quantity, the energy utilization coefficient, fEU,  
defined as fEU=r/W, we have assessed the efficacy of the process with respect to the 
maximization of the oil transport per kW of mechanical power supplied to the system. Our 
calculations show that for every fixed value in Ca there exists a unique value in r, r*(Ca), 
for which fEU (=r/W) attains a local maximum value. Thus, there exists a continuous line 

( )pm
0
R

0
A ,,,;Ca*rr xθθκ= , in the domain of (Ca, r) values for which two-phase flow is 

sustainable, along which the operation of the system is at its most efficient in terms of oil 
flowrate per unit energy cost. 
 
It is worth noting that tackling the problem of the existence of ‘optimum’ conditions in an 
overall (“holistic”) sense reveals no clear and consistent answer. Here the predictive 
capabilities of the DeProF model are extremely useful; a detailed /analytic examination of 
the flow using a few specially selected macroscopic interstitial physical quantities, such as 
the interfacial area per unit volume, the mechanical power dissipation per unit volume, the 
degree of disconnection of the non-wetting phase, and the rate of o/w interface transfer [8], 
gives one the capability to characterize the physic al system in a straightforward manner 
and come up with some basic conclusions. 
 
The existence of ‘optimum conditions’ for oil transport in steady-state two-phase flow in 
pore networks is a consequence of the remarkable internal adaptability of the flow to 
externally imposed flow conditions (Ca, r) and its inherent characteristic in trading-off 
between connected pathway flow, ganglion dynamics and drop traffic flow and self 
adjusting the connected versus disconnected moving-oil balance. 
 
Two-dimensional pore networks have been used in the past to study SS2f flow in porous 
media on a laboratory scale. There has always been a great deal of skepticism on whether 
the observed behavior of two-phase flow in pore networks is representative of two-phase 
flows in real porous media. The results of the present work show the potential of using 
pore network hierarchical models, such as DeProF, to elucidate the physics of two-phase 



flow in real porous media in a self consistent way. In future works the effects of pore-size 
correlation and network heterogeneities should be investigated along the same lines. 
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