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ABSTRACT 
Shoreface reservoirs are characterized by coarsening up sequences of fine to medium 
grained sandstone.  Single coarsening-up parasequences are often easily recognizable 
within stacked shoreface sequences.  These elements are the fundamental building blocks 
(representative genetic units) of such reservoirs.  We identify such a package in a North 
Sea oil well, and show how the detailed characterization of this single shoreface unit can 
be used to predict, via neural networks, a range of parameters throughout the rest of the 
well and an adjacent well in the same oilfield. We have termed the  approach “Genetic 
Petrophysics” as it emphasizes the genetic aspects of the sandstone body in both the 
sampling and prediction strategies.  The work presented has both extended our previous 
studies on permeability prediction, and has also applied the appr oach to the prediction of 
other diverse parameters. A key new result is that excellent predictions can be made from 
extremely limited but representative conventional or SCAL core plug data. This provides a 
very cost effective sampling strategy, and paves the way for rapidly predicting a whole 
range of other parameters of interest from minimal core data.  
 
INTRODUCTION 
Acquisition and analysis of core is very costly and time consuming. The industry standard 
practice is to sample conventional horizontal plugs  every foot (about 0.3m), conventional 
vertical plugs every 3 feet, and SCAL plugs perhaps every 6 feet, over a large cored 
interval (generally a few hundred feet). This approach is not based on geological criteria 
and can inadvertently bias the sampling so that some lithologies (or hydraulic units) may 
be over-sampled, whilst others may be substantially under-sampled. Corbett et al [1] 
provide a short review of the geological, petrophysical and statistical issues involved.  
 
In contrast, we have advocated a sampling strategy [1-4] that is based on selecting a small 
representative genetic unit (RGU) from the available wireline log data and drill cuttings, 
and then performing a detailed analysis of the core in this RGU. Figure 1 shows a 
schematic diagram indicating the essential elements of this sampling strategy. The 
measured RGU provides data that is used to train a genetically focused neural net (GFNN), 



which is then used to predict a variety of properties in the other RGUs throughout the rest 
of the well and adjacent wells in the same oilfield. There are several reasons for advocating 
this approach: 
 
• The RGU sampled is selected on the basis of geological criteria. 
• The RGU is representative of the other units in the well, and adjacent wells in the same 

oilfield. The RGU may be even more generic in that it could be representative of 
similar depositional units in other oilfields.  

• It is very cost effective in terms of core acquisition, core measurement, and data 
processing. The neural net need only be trained on this limited ‘smart’ dataset. In 
situations where core is scarce, it maximises the potential usefulness of that core. 

• All multi-disciplinary studies use this common sample set. 
• Data collection can be rapid yet comprehensive at multi-scales (at the probe, plug, and 

whole core scales), due to the short intervals involved. 
• Rapid parameter prediction can be extended beyond permeability to acoustic properties 

(suitable for time -lapse geophysical and engineering studies), stress sensitivity, and 
several other key parameters of interest from minimal initial measurements on the 
training core sample set. This allows field development decisions to be made at a much 
earlier stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of coarsening upwards shoreface representative genetic units (RGUs) 
in 3 wells. The measured RGU provides the training dataset for predicting parameters in 
the other RGUs. 
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We recently demonstrated this approach by successfully predicting permeability 
throughout the cored intervals of a number of North Sea oil wells [5,6], primarily in an 
oilfield where permeability prediction had previously been problematic due to a very poor 
relationship between porosity and permeability. We previously showed [3,7] that 
microporous illite rims around quartz grains in core material from these wells resulted in 
porosity remaining almost constant, whilst permeability could vary by several orders of 
magnitude depending upon the illite content. We trained a GFNN predictor on the 
permeability values from just 24 conventional core plugs, along with the associated 
wireline log data, within one short 7m shoreface RGU [5,6]. The predictor was 
successfully tested throughout the cored interval of the same oil well (129m), cored 
intervals in adjacent wells in the same oilfield, and in a shoreface interval in a completely 
different oilfield. The latter result suggests that the approach might be truly generic, and 
that our predictor might be applied more generally to other oilfields, with similar 
depositional units, where there is no core data. If core data is available, however, one 
would normally train a GFNN predictor on the relevant data within the oilfield of interest.  
 
Prior to our work [5,6] described above, another study had shown some success in 
predicting permeability in other localities (without using a genetic approach), from what 
was then considered “limited” core data involving 45 core training plugs [8]. We now test 
whether we can dramatically reduce the number of training data points still further within 
our RGU (to one representative point per hydraulic unit), and still achieve comparable 
predictions to our prior work. The strategy is also extended to test whether other 
parameters can be successfully predicted using this genetic methodology. 
 
METHODOLOGY 
A short 7m RGU was chosen on the basis of standard wireline log data in PEGASUS Well 
2. The core in this interval has been comprehensively analysed using a variety of 
conventional and novel techniques (for a review see [7]). This dataset formed the basis for 
training various neural nets in order to predict petrophysical, geophysical, and geochemical 
parameters in larger intervals both in the same well and elsewhere. For the neural net itself, 
we employed a combination of 3 algorithms (back propagation, Cascade-Correlation and 
TACOMA) in a committee neural network, rather than using a single algorithm. This 
allowed slightly better overall predictions than our previous work [5,6], which had only 
used a back propagation algorithm.  
 
We first trained a GFNN permeability predictor using data from minimal horizontal core 
plug permeability values in the RGU, plus the associated data from just 3 key wireline logs 
(gamma ray, bulk density and sonic transit time). This generated predictions in the test 
intervals using data from the 3 key wireline logs in those intervals. We previously showed 
[5,6] that this combination of wireline logs gave comparable results to predictors which 
used all 6 available wireline logs (the others being neutron porosity, medium and deep 
induction logs). No nuclear magnetic resonance (NMR) logs were run in this field. The 
gamma ray log was directly linked to the content of the permeability controlling illite clay, 



whilst the bulk density and sonic logs accounted for the effect of low porosity and 
permeability (mainly barite) cemented regions. We significantly reduced the amount of 
initial core training data within the RGU from 24 plugs in our previous work [5,6] down to 
only one plug per hydraulic unit (in this case just 5 plugs). If we had no other core data, we 
would normally have done this by plotting our available RGU data on a global hydraulic 
element grid [9] and selecting a core plug from each hydraulic element. In this instance, 
however, since we had the conventional core plug porosity and permeability data for the 
entire 129m cored interval of the well (297 horizontal plugs), we decided to use the 
methodology of [10] to firstly categorize all the plugs in the well into their respective 
hydraulic units. It turned out that there were essentially 5 hydraulic units in the well, and 
the 24 conventional core plugs in the RGU contained representatives from each hydraulic 
unit. We therefore decided to train the neural net using the permeability values from just 5 
of these conventional horizontal plugs, one representative from each of the hydraulic units 
(see Figure 2), along with the associated depth matched wireline log data from the 3 key 
logs at those depths. The predictions were then compared with the measured core plug 
values in the test intervals, and also compared with a neural net predictor trained on the 
substantially larger dataset comprising the entire 129m cored section of the well. We 
subsequently trained neural nets to predict other parameters using a slightly different 
combination of wireline logs as detailed in the results section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The lines represent the mean trends of the 5 hydraulic units (HU) determined 
using the porosity and permeability data of all the 297 horizontal conventional core plugs 
in PEGASUS Well 2. The 5 training plugs for permeability prediction all come from the 
RGU and represent each of the 5 hydraulic units. Likewise, the 4 plugs from the RGU for 
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the prediction of shear wave quality factor (Qs) represent a reasonable range of the 
hydraulic units in the well. 
 
RESULTS 
Genetic Permeability Prediction in PEGASUS Well 2  
Figure 3 shows a comparison of neural net predicted and measured core plug 
permeabilities with depth for the entire cored interval of PEGASUS Well 2. Figure 3 (a) 
shows the results where the neural net was trained using data from the 3 key wireline logs 
(gamma ray, bulk density and sonic logs) and routine horizontal core plug air permeability 
values from just 5 discrete depths within the RGU (one from each of the 5 hydraulic units). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. A comparison of neural net predicted permeability and measured values in 
PEGASUS Well 2 using predictors trained on (a) Just 5 representative plugs in the RGU, 
and (b) All 297 plugs throughout the interval. Each predictor also used data from 3 key 
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wireline logs (GR, RHOB, DT) in the training and test intervals. Depths are from top of 
RGU (actual depths are confidential). 
The position of the RGU is shown on the figure. Figure 3 (b) shows the results where the 
neural net was trained using the 3 key wireline logs and routine horizontal core plug air 
permeability data throughout the entire 129m cored interval of PEGASUS Well 2. This 
meant that 297 values of each wireline log and core plug permeability were used to train 
the neural networks in this case. Remarkably, the predictor trained on the very limited 
RGU dataset was almost as good as that based on the substantially larger (by a factor of 
60) full dataset. Crossplots of the logarithms of the measured versus predicted 
permeabilities for the predictors based on the limited and full datasets gave values of 0.72 
and 0.85 respectively for the power regression coefficient r2. The RGU predictor is a 
considerable improvement on any predictor based on the core porosity – permeability 
relationship (in PEGASUS Well 2 the porosity – permeability crossplot has a power 
regression coefficient r2 = 0.25). The results from the limited dataset (5 plug) RGU 
predictor are also comparable to our previous results [5,6] using all 24 plugs in the RGU, 
where r2 = 0.71 using a neural net predictor based on one algorithm (back propagation). 
The predicted versus measured correlation coefficients for the RGU predictors compare 
favourably (particularly considering the large number of our predicted points) compared to 
other reported values for neural net permeability prediction studies. Moreover, previous 
authors often either quote values of r rather than r2, for example [11] report r values 
between 0.49 and 0.86 (i.e., r2 = 0.24 – 0.74), or they may not give any correlation 
coefficient [8]. We have pointed out [6], however, that values of the regression coefficient 
should be treated with some caution, as the presence of just two outliers can reduce the r2 
value by 0.1 or more. Also, the core validation dataset can sometimes miss key features 
(due to the industry standard 1 core plug per foot sampling strategy) that are predicted by 
the neural net and confirmed from other data such as core photos, resulting in a potentially 
good predictor having an anomalously low r2 value. 
 
Genetic Permeability Prediction Using PEGASUS Well 2 Predictors In An Adjacent 
Oil Well 
Figures 4 (a) and (b) show the results of testing the PEGASUS Well 2 permeability 
predictors in an adjacent well (PEGASUS Well 2b). The predictions based on the limited 
RGU training dataset (Figure 4 (a)) are again very similar to those based on the much 
larger dataset (Figure 4 (b)), and both successfully predict the general trends of 
permeability with depth. Crossplots of the logarithms of the measured versus predicted 
permeabilities show that the power regression coefficient r2 is actually slightly better for 
the predictor based on the limited RGU dataset in this case, the values being 0.68 and 0.65 
for the limited RGU and entire core datasets respectively. 
 
Genetic Prediction Of Other SCAL Parameters  
Since permeability was successfully predicted using very limited training data, then the 
genetic petrophysics approach could potentially allow a whole variety of other parameters 
to be predicted in this way. We tested this idea by training neural nets on data from the 
PEGASUS Well 2 RGU, to predict other special core analysis (SCAL) parameters in 



adjacent PEGASUS Well 2b, and compared the predictions with the measured values on 
intervals of core made ava ilable to us. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. A comparison of neural net predicted permeability and measured values in 
PEGASUS Well 2b using predictors trained from adjacent PEGASUS Well 2 on (a) The 5 
representative plugs in the RGU, and (b) All 297 plugs throughout Well 2. Each predictor 
used data from 3 key logs (GR, RHOB, DT) in the training and test intervals. Depths are 
from top of cored section.  
 
(a) Genetic Prediction Of An Acoustic Parameter –  Shear Wave Quality Factor  
We genetically predicted the shear wave quality factor (Q s), which is reciprocally related 
to acoustic attenuation, for crude oil saturated samples at stress sensitive conditions (30 
MPa) close to in-situ reservoir pressures. In this case we trained a neural net using data 
from only 4 SCAL plugs that had previously been cut for these measurements from the 
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PEGASUS Well 2 RGU. These plugs were representative of a reasonable range of the 
Well 2 hydraulic units (see Figure 2), and the training dataset of Qs measurements was 
made at ultrasonic frequencies under the same conditions as detailed above. We would 
have preferred to have some more plugs to encompass the full range of hydraulic units, 
however it was not possible in this case, mainly because much of the rest of the core was 
used for other studies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. (a) Neural net predicted values of the shear wave quality factor (Qs) at 30 MPa 
close to in-situ pressures for crude oil saturated samples in PEGASUS Well 2b. The 
predictor was trained on just 4 SCAL plugs from the PEGASUS Well 2 RGU, along with 
associated wireline log data. Our measured values on core plugs cut from intervals of the 
slabbed core are also shown. (b) Crossplot of the predicted versus measured Qs values. 
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The neural net predictors in this case were trained without using any acoustic wireline log 
data in the training well (PEGASUS Well 2) or the test well (PEGASUS Well 2b), i.e. 
without using the sonic log data. This was to test whether we could provide good acoustic 
predictions merely from the limited SCAL training data in conjunction with some non-
acoustic wireline logs. We chose to train the neural net using the gamma ray, bulk density 
and deep induction logs. Figure 5 (a) shows the neural net predictions of Qs at 30 MPa for  
crude oil saturated samples throughout the cored interval of PEGASUS Well 2b, using the 
predictor based on the PEGASUS Well 2 RGU limited SCAL dataset.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. (a) Neural net predicted values of the fluorenone / methyl fluorenone ratio in 
PEGASUS Well 2b using the PEGASUS Well 2 RGU predictor based on data from 37 
small rock chips and associated wireline log data. Our measured values on 10 core chips 
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made available to us are shown for comparison. (b) Crossplot of the predicted versus 
measured values of the fluorenone / methyl fluorenone ratio.  
 
 
We were allowed access to 4 short intervals of core in PEGASUS Well 2b to test our 
predictions. The sections contained core with a variation in properties from both clean 
sand and muddy sand intervals. From these intervals 10 plugs were cut (5 cm in diameter 
and 2.5 cm in height). They were then saturated in the relevant crude oil, and the values of 
Qs at 30 MPa were measured. The results are also plotted on Figure 5 (a) and show good 
agreement with the neural net predictions. The distinct measured differences between the 
low values of Qs in the clean sand and the higher values in the muddy sand were 
successfully predicted by the neural net. Figure 5 (b) shows a crossplot of the neural net 
predictions versus the measured Qs values. The linear regression coefficient r2 = 0.70 and 
the trendline is very close to a line of unit slope passing through the origin.  
 
(b) Genetic Prediction Of A Geochemical Parameter –  Fluorenone / Methyl Fluorenone 
Ratio 
We genetically predicted the ratio of two non-producible geochemical compounds, 
fluorenone / methyl fluorenone, throughout the cored interval of PEGASUS Well 2b using 
geochemical data acquired from 37 small chips of core from the PEGASUS Well 2 RGU. 
These chips spanned the full range of hydraulic units within PEGASUS Well 2. In this 
case we trained the neural net predictor using the gamma ray, neutron porosity and 
medium induction logs. Figure 6 (a) shows the neural net predictions of the fluorenone / 
methyl fluorenone ratio, along with the measured values taken on 10 small rock chips, in 
PEGASUS Well 2b. The predictions are generally in good agreement with the 
measurements, and Figure 6 (b) shows that a crossplot of the values gives a linear 
regression coefficient r2 = 0.68. The predictions, however, are generally slightly higher 
than the measured values. Recent research (Lager, Bennett and Larter, personal 
communication) has shown that fluorenones and methyl fluorenones exhibit decreases in 
concentration with time under certain conditions due to oxidation. However, the methyl 
fluorenones are more stable and decrease less rapidly, so that the ratio can decrease with 
time. The measured ratios in the test well were made a few years after the original 
measurements in the neural net training well, possibly explaining why the predictions are 
slightly higher than the measured values in the test well. At present the significance of 
these compounds is unclear. However, they may turn out to be potentially  useful as their 
concentration and ratio does show correspondences with clay content, the gamma ray log, 
the induction logs, water saturation, and wettability [12].  
 
CONCLUSIONS 
This work strongly supports the genetic petrophysics approach, and has result ed in the 
following conclusions: 
• It has extended our recent work on genetic permeability prediction to demonstrate that 

extremely limited, but representative, data can be used to train a neural net to rapidly 
predict key petrophysical (or geophysical, or geochemical) parameters throughout the 



uncored intervals in a well, or an adjacent uncored well in the same oilfield. The 
methodology potentially allows rapid prediction of virtually any parameter of interest, 
even at in-situ pressures (like the predictions  of acoustic quality factor), from a handful 
of measurements on representative core samples. Our previous work [5,6] also 
suggested that our genetic shoreface predictors may be even more generic since they 
provided good predictions in a shoreface interval in a completely different oilfield. 

• In particular, the results on genetic permeability prediction have demonstrated that 
training a neural net on the permeability data from just 5 initial conventional core 
plugs (one from each hydraulic unit) in a short representative genetic unit (RGU), 
along with associated minimal wireline log data from 3 key logs, can produce excellent 
predictions in shoreface environments. The predictions in PEGASUS Well 2 were 
equally as good as our previous ones based on using all 24 plugs in the RGU [5,6], 
and, significantly, were almost as good as those which used the entire dataset (297 
plugs) from the 129 m cored interval of the training well. Moreover, the predictions in 
adjacent PEGASUS Well 2b using the limited training dataset (5 plugs from the 
PEGASUS Well 2 RGU, plus the associated wireline log data) were actually slightly 
better than those generated using the entire PEGASUS Well 2 dataset. 

• Predictions of the shear wave quality factor (Qs), at close to in-situ pressures, were  
made throughout the cored interval of  PEGASUS Well 2b from a limited training 
dataset comprising just 4 SCAL plugs in the RGU of adjacent PEGASUS Well 2 (plus 
the associated data from 3 wireline logs). The predictions agreed well with measured 
values, where these were possible. Moreover, the neural net predictor did not make use 
of any acoustic wireline log data in the training or test wells.  

• A close association between the petrophysics and fluid rock interactions are indicated 
by the apparent ability of the neural network to predict the behaviour of a  petroleum 
geochemical parameter, the ratio of fluorenone / methyl fluorenone [12], which 
probably tracks clay content and may have a surrogate role as a wettability prediction 
parameter. The geochemical log was predicted in the test well (PEGASUS Well 2b), 
using a training dataset acquired from a series of rock chips from the RGU in adjacent 
well PEGASUS Well 2, together with the associated data from 3 wireline logs. The 
predictions agreed well with measured values, raising the possibility that calibrated 
geochemical wettability logs derived from standard log suites may be possible. 

• The results have implications for petrophysical sampling. The sampling of 
conventional and SCAL plugs could be more effectively done by sampling a small 
RGU rather than a large cored interval at regular arbitrary spacings. Minimal 
representative SCAL plugs (which could be used for genetic prediction purposes) 
could be selected by plotting the available data on a global hydraulic element grid [9]. 
Alternatively, if a significant amount of conventional core data is already available, 
then the selection of minimal representative SCAL plugs could be done using 
conventional hydraulic unit analysis [10]. 

• The genetic petrophysics approach is very cost effective and less time consuming in 
terms of core acquisition, sampling, measurement, and parameter prediction purposes. 
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