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ABSTRACT 

Permeability is one of the most important characteristics of hydrocarbon bearing 
formations. An accurate knowledge of permeability provides petroleum engineers with a 
tool for efficiently managing the production process of a field. Furthermore, it is one of 
the most important pieces of information in the design and management of enhanced 
recovery operations. Formation permeability is often measured in the laboratory from 

cores or evaluated from well test data. 
 

CT scan data is widely used to calculate porosity and build 3D models of rock matrix in 
carbonates, but in this study we illustrate a method to use these data together with 
conventiona l laboratory measurements for estimating permeability of carbonate rocks. To 
do this core samples from a carbonate oil field in south west of Iran have been studied. 
The Permeability of samples was measured using a PDPK™ apparatus, the porosity of 
each sample was measured and CT slices were taken in constant intervals across the 
samples. Thin sections in the horizontal and vertical directions were prepared from the 
end pieces of the samples and were analyzed by using the optical microscope. For each 
core sample a column matrix containing average volumetric percentages of different 
minerals were assigned. CT numbers corresponding to each slice were exported in the 
form of a spreadsheet. All such spreadsheets that belong to the ith sample, together with 
porosity, column matrix and PDPK™ average permeability were called "ith data set". All 
data sets were considered as training examples of a back propagation artificial neural 
network, whilst the target was permeability. Validation of the network results was 
achieved by leaving out some of the data sets and comparing their measured 
permeabilities with calculated ones. To decrease calculation time, up scaling was applied 
on CT data by scales of 2:1, 4:1, 8:1, 16:1 and 32:1 and results were compared with each 
other. A better understanding of the relationship between volume percentage of minerals, 

porosity, CT scan data and permeability of carbonates is developed from this study. 
 

INTRODUCTION 
Acquiring knowledge on formation permeability in carbonate reservoirs has remained 
one of the fundamental challenges to petroleum engineers. This important piece of 
information about porous rock provides engineers with the ability to design and manage 
efficient processes in the development of oil and gas fields. Using coring tools and 
bringing samples of the pay zone to the surface and measuring their permeability under 



 

simulated downhole conditions is one of the oldest practices for estimating the formation 
permeability. Coring every well in a large field can be very expensive. It is necessary and 
inevitable to core some wells no matter how small or large a field. On the other hand, 
trying to get a representative sample from every single well, especially in fields with 
hundreds of wells, requires a large amount of capital. In a heterogeneous field where 
permeability values tend to change rapidly with spatial coordinates, such practices 
(coring every well), although expensive, would provide valuable information. Having a 
representative value for permeability in different locations, especially where wells 
(injection or production) are drilled could be used effectively in reservoir simulation 

studies. 
 

Oil and oil service companies began using CT and MRI imaging technologies in the mid-
1980s. The Oil industry uses X-ray Computerized Tomography (CT) and Magnetic 
Resonance Imaging (MRI) to characterize rock samples (cores) taken from wells. The 
industry is interested not only in topological issues concerning the structure of the rock 
samples or fluid boundaries; but, it is also essential to quantify the three-dimensional 

distribution of properties such as density and effective atomic number.  
 

During the past several years, the number of successful applications of neural networks to 
solve complex problems has increased exponentially. Considerable attention has been 
devoted to the use of neural networks as an alternative approach to interpolation and 
extrapolation, pattern recognition, statistical, and mathematical modeling [1]. For 
example, back-propagation neural networks were used to develop process models as 
substitutes for complicated empirical and mathematical models [2]. These models can be 
used as an alternative to statistical and time series analysis. Neural network analysis, 
unlike regression, does not require specification of structural relationships between the 
input and output data. However, identification using neural networks is more useful when 
large amounts of data are available. Some CT data volumes may consist of 
1000×1000×1000 pixels (or voxels) and artificial neural networks could significantly 
help geoscientists to identify relationships between different types of core properties and 

CT data. 
 

PROCEDURES 
Basics of X-ray CT Scanning 

Computed X-ray tomography, or X-ray CT, is a completely non-destructive means of 
examining the interiors of opaque solid objects. It produces two-dimensional images 
(called "slices") that reveal the interior of an object as if it had been sliced open along the 
image plane for viewing. Contrast in an X-ray CT image is generated by differences in X-
ray absorption that arise principally from differences in density within the object. 
 
To produce tomographic images, X-rays pass through the object along several different 
paths in several different directions, resulting in an image that displays differences in 
density at each of several thousand points in a two-dimensional slice through the object 
tomography. The values attained when the detectors are read represent the beam 



 

attenuation by an object placed in the path of the X-rays. The detectors are in a stationary 
array surrounding the object. The X-ray beams are always directed through the object 
aperture as the source moves around it in a circular path. The detectors are read at small 
rotational intervals and the resulting data are stored in a computer. This rotational 
excursion is called a pass and the total data acquired during this pass are termed a slice. 
After all readings for a slice have been acquired and stored in a computer, a cross-
sectional image or matrix of attenuation coefficients µ(x, y) is created. Radon [3] 
established the mathematical foundation for image reconstruction from projection data. 
The basic synthetic unit is the volume element or voxel. The CT slice is composed of 
many voxels, each with its own characteristic attenuation, which are displayed as a 2-D 

image matrix of picture elements (pixels ), shown in Figure1. 
 
While this technique was originally developed for medical diagnosis, a similar technique 
has recently found industrial application. Industrial CT instruments are conceptually 
similar to those used for medical diagnosis, but are capable of significantly higher X-ray 
intensity and markedly higher spatial resolution. As a result, it is now possible to image 
the interiors of geological samples with remarkable clarity. 
 
 
 
 
 
 
 
 
 

 
 

The intensity data can be converted to an image representing differences in X-ray 
attenuation in the specimen by using Beer's law [4] to relate the incident intensity (Io) 
and the final intensity (I ) to the object's linear attenuation coefficient (µ ): 
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in which d is a distance coordinate along the X-ray path and x is a dummy variable of 
integration over distance. The unknowns in Equation (1) are the values of µ(x), that is, 
the values of the linear attenuation coefficient at each point along each X-ray path. 
Differentiation of features within the object is possible because µ at each point depends 
directly on the density of the object at that point (?), on the effective atomic number of 
the material comprising the object at that point (Z ) and the energy of the incoming X-ray 
beam (E ) according to: 
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Figure 1. Schematic of CT scanning process. 

X-ray 
source 

Pixel 

Detector 



 

in which a  is a quantity with a relatively small energy dependence, and b is a constant 
[5]. When a mixture of atomic species is present, Z (the effective atomic number) is 
defined by: 

[ ]∑=
i

  
ii ZfZ )( 8.38.3        (3) 

in which if  is the fraction of the total number of electrons contributed by element i with 
atomic number iZ .  
Since it is impractical to deal with the X-ray attenuation coefficient, µ, a new scale is 
defined based on the international standard unit of Hounsfield (HU or CT number)[6]. On 
this scale, water has a value of zero and air has a value of -1000. Hence, each CT unit 
represents about a 0.1% change in the attenuation coefficient. Equation (4) defines the 

CT number: 
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where µx is the calculated X-ray attenuation coefficient. In most CT scanners, the range 
of CT unit varies from -1000, representing air, to 4000, representing very dense 
materials. Reservoir rocks typically fall in the range of 1000 to 2000 on this scale (Table 

1). 
 

Table 1. Linear attenuation coefficients (µ) and CT numbers for some common mineral end-
members. The tabulated values are calculated specifically for 120keV X-ray energy (modified from 

University of Texas’s web site). 
 

Mineral Name Idealized Formula Mass Density 
(g/cm3) µ (cm-1) CT Number 

Quartz SiO2 2.65 0.448 1275 
Muscovite KAl3Si3O10(OH)2 2.83 0.490 1323 

Hedenbergite CaFeSi2O6 3.63 0.823 2005 
Calcite CaCO3 2.71 0.530 1384 

Dolomite CaMg(CO3)2 2.87 0.513 1357 
Microcline KAlSi3O8 2.56 0.452 1279 

Rutile TiO2 4.25 0.955 2326 
Diopside CaMgSi2O6 3.23 0.601 1513 

Albite NaAlSi3O8 2.62 0.436 1266 
Fayalite Fe2SiO4 4.39 1.22 2993 

Magnetite Fe3O4 5.22 1.62 4000 
 
 

Sample Description 
This study is carried out on 34 core samples that have been taken from Sarvak Formation 
in four exploration wells located in the south west of Iran. The limestones of the 
overlying Sarvak Formation (Albian – Turonian) formed during the high stand. A major 
sea-level fall at the Cenomanian – Turonian boundary exposed carbonates of the Sarvak 
Formation. However, the uppermost portion of the Sarvak Formation was deposited 



 

during an early Turonian sea-level rise, and was subsequently exposed due to a minor 
sea-level fall. Major diagenetic alterations occurred along the Cenomanian - Turonian 
unconformity. Meteoric processes resulted in karstification, generation of porosity and 
permeability, and dolomitization, forming good reservoir quality strata in the Sarvak 
Formation. Burial diagenesis affected all units, in some cases increasing porosity and 
permeability and in others decreasing them [7]. Investigating correlations between 
permeability and other petrophysical properties in carbonate rocks is not as 
straightforward as in sandstones. For example different types of porosity in carbonate 
rocks such as vugs, micro-fractures, intragranular and intergranular porosity, results in 
permeability variations for the same porosity. Therefore considering other types of 
available data to estimate permeability in carbonates could increase accuracy of the 
results. 

 
The depth of sampling was determined based on petrophysical and geological logs in the 
four exploration wells. The samples were prepared as cylindrical shape plugs; these 
samples are plugged vertically and are 1.5” in diameter and 2.5” in length (Figure 2-a). 
After preparation of samples, precise physical measurements were taken, (including 
mass, diameter and length) and then the porosity and permeability of samples were 
determined. Densities were achieved by calculating mass/volume ratios for each sample, 
porosities were determined using an ASC300 porosity meter and permeability measured 
by a pressure decay profile permeametry (PDPK™) apparatus. To measure permeability 
of samples they were located in the specific place of apparatus and pressure decays were 
measured in two orthogonal directions (as shown in Figure 2-a) in 1cm constant intervals 
along the sample’s main axis. Average of all measured values for each core sample is 

called “Average Horizontal PDPK™ Permeability” of the sample. 
 

Scanning Procedure 
An Xforce Toshiba CT scanner (third generation) at JNOC- Technology Research Centre 
was used in this study. The scanner consists of a mainframe, rotational elements, and 
scanner electronics. The mainframe houses the X-ray source, detector array, and beam 
shaping elements. The scanner assembly consists of a support table for positioning the 
core. The generator group is responsible for generating the X-rays. The control panel 
consists of a video console, an interactive keyboard for viewing, initiating image 
generation, and for image manipulation. The computation unit performs sequencing, 
interprets instructions, and executes them. The Image Processing System accepts image 
information in digital form and converts it to the image seen on the viewing monitors. 
Processed images including digital data have been stored in appropriate storage media 

such as magnetic disks.  
 
 
 
 
 
 

2 mm 

Figure 2-b. Schematic of the CT slices 
along the sample. 

Figure 2-a. Sample photo-montage of 
core plugs. 



 

Figure 3 displays the scanner components. The cores were initially  cleaned, dried and 
then scanned at  room pressure and temperature at an energy level of 120 keV and a field 
size of 18 cm. A small field of scan was used to obtain better spatial resolution, as the 
number of pixels available remains constant. Slices were taken in 2 mm constant intervals 

along each sample as it is displayed in Figure 2-b. 
  
 
 
 
 
 
 
 
 
 
 
 
 

Slice thickness was made as small as possible, i.e., 1 mm (it varies from 1-10 mm), in 
order to minimize errors and maximize resolution. Greater slice thickness results in 
greater measurement error.  The size for each CT slice is 112 3 112, and each pixel 
represents a volume of 0.35 mm 3 0.35 mm 3 1 mm. The average CT value within each 
pixel has been considered as CT value of the pixel. Figure 4 shows a series of CT images 

obtained for each core sample.  
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

Data Set Arrangement 
CT data of a core sample consists of 32 matrices each of 112 3 112 size which in 
mathematical notation can be showed as CT(i,j) & i,j= 1,2,…,112. To reduce size of CT 
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Figure 3. The scanner system. 

Figure 4. A series of CT images obtained for core samples. 



 

data and consequently calculation time, the average of each CT slice has been considered 
as representative of that slice. In this study we considered 6 data sets of different scales 
for each sample. First set consists of 32 CT slice averages together with porosity, depth 
of samples, bulk density and volume percentage of minerals as input , and permeability of 
samples as output part of data. The second, third, forth and fifth data sets consist of all 
information of first data set, but the  difference is in scale of CT data.  The number of CT 
averages has  been reduced by scales of 1/2, 1/4, 1/8 , 1/16 and 1/32 as shown in figure 5. 

 
 
 

   
 
 
 
 
 
 
 

Up scaling the CT averages is done using a simple averaging method: 
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NETWORK STRUCTURE DESIGN 
Known as  sixth generation computing, neural networks are widely used in many 
disciplines from weather forecast to airport security devices. Neural networks are analog, 
distributive and parallel information processing methods that have proven to be powerful 
pattern recognition tools [8]. Since they process data and learn in a parallel and 
distributed fashion, they are able to discover highly complex relationships between 
several variables that are presented to the network. As a model- free function estimator, 
neural networks can map input to output no matter how complex the relationship. There 
are several paradigms that can be used to generate neural networks. To achieve the goal 
of this study, a feed forward, back propagation neural network (which adopts a 
supervised training scheme) has been used. An artificial neural network is a system of 
several simple processing units known as nodes, neurons or processing elements. These 
processing elements are associated with one another through simple connections known 
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Figure 5. Schematic of data sets . 

Depth of 
Sample 

Bulk 
Density 



 

as synaptic connections. The strength of the synaptic connections changes with attaching 
a weight to them. Figure 6 is a schematic diagram of a typical artificial neural network.  

 
 

 
 
 
 
 
 
 
 

Neurons in a network are organized in layers. Each layer is responsible for a particular 
task. Typically there are three kinds of layers in an artificial neural network. Input layer is 
responsible for presenting the network with the necessary information from the outside 
world in a normalized manner. Hidden layers (there may be more than one hidden layer 
in a network, this is a problem dependent factor) contain hidden neurons that are 
responsible for the main part of the input to output mapping. These neurons are 
responsible for feature extraction from the input neurons and subsequently passing the 
information to the output neurons. Output layer contains output neurons that 
communicate the outcome of the neural networks computation with the user. The back-

propagation learning rule that is used in this study, is introduced below [9]: 
 

 ][s
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A processing element of a feed-forward network transfers its inputs as follows: 
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where f is a transfer function. The function f can be any smooth function for a processing 
element. The sigmoid function is used as the transfer function in this study. After 
selecting neural network structure, samples for training and testing the network are 
collected as described in Figure 5. During the supervised training, it was necessary to 
provide the network with the correct permeability value for each example. The network 
will converge to the correct permeability value by back propagating the error between its 

prediction and the actual permeability value.  
 

RESULTS 
Figure 7 shows the relationship between sample permeability and  CT average, depth, 
percentages of calcite, and dolomite, respectively. The scatter of these plots and low 
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Figure 6. Schematic of an Artificial Neural Network. 



 

Figure 7. Relationships between permeability with other data of samples. 

Figure 8-a. Comparison between measured with 
calculated permeability values of 22 core samples 

obtained from multiple linear regression. 

Figure 8-b. Cross plot of measured and 
calculated permeability values of 12 test samples 

obtained from multiple linear regression. 

correlation coefficients (except for CT average that is a function of density) suggest no 
apparent relationship between these parameters and formation permeability.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Samples were divided into two sets, one set containing 22 samples for analysis or 
learning and another set of 12 samples for testing of the results. We performed multiple 
linear regression on the analysis data set to achieve a general formula for calculating 
permeability using other available parameters of the samples as shown in Figure 8-a. The 
correlation coefficient is moderate. Figure 8-b is a comparison between the actual 

permeability of samples and  calculated va lues. The correlation coefficient is good. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The networks were trained and then tested to see if they were able to estimate/predict 
permeability values from the four wells in Sarvak formation. The 12 samples that were 
chosen randomly in this study for test purposes (and were never seen by networks during 
the training) included a wide range of permeabilities from 0.05 to 179.15 mD. This 
further indicates the high degree of heterogeneity of this formation. Figure 9 shows the 
actual permeability values of test samples that were measured in the laboratory in 
comparison with the network's estimation/prediction for each sample. Although 
permeability values cover a wide range, the network is able to follow the trend very 
closely. This figure show’s an increase in accuracy of predictions as the number of CT 

  R= 0.6738 



 

averages (NN CT [#]) is increased, specially for the samples with low permeability. After 
plotting core measurements versus network predictions, one can see the divergence of the 

predictions from a perfect match, which is the unit slope line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 displays effect of up scaling the CT averages on permeability prediction. 
Comparing the results presented in Figures 9 and 10 with that of Figures 8 and 7 reveals 
the power of artificial neural networks in pattern recognition. One might comment on the 
input variables that were used in this study in the following fashion: CT numbers are 
related to the density, topology and structure of medium and consequently are related to 
the fractures that have doubtless influence on permeability. Depth of the formation is an 
indication of reservoir pressure that might affect permeability. Percentage of minerals 

cause changes in wettability which has a direct impact on permeability.  
  
  
 
 
 
 
 
 
 
 
 

DISCUSSION 
The results presented here are based on data of 34 samples taken from four wells. A few 
points about these results need to be mentioned. Our experience with the design and 
development of neural networks for permeability prediction/estimation has shown that it 
is essential to have enough data to train the network properly in order to see acceptable, 
as well as repeatable, results. The questions of how much data is enough and whether 

Figure 9. Comparison between results of ANNs containing different numbers of CT averages. 
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Figure 10. Effect of Up Scaling on Permeability prediction. 



 

there exists a threshold below which neural nets will not be effective are currently under 
investigation. The results are as good as the data available. With proper data more can be 

done with neural networks than any other tool. 
CONCLUSIONS 

This study showed that neural network estimation of carbonates permeability using CT 
scan data is a feasible methodology. Artificial neural networks that are capable of 
predicting/estimating carbonate permeability using CT scan and laboratory data were 
presented. It was shown that the trained networks were able to predict/estimate 
permeability comparable to that of actual core measurements. Availability of reliable core 
data for training process proved to be essential. At this point, this type of study is capable 
of producing lab specific results. Adequate knowledge on fundamental theories and 
practices of artificial neural networks are required to achieve acceptable and repeatable 

results. Treating neural nets as black boxes may prove to be disappointing. 
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NOMENCLATURE  
a  = Klein-Nishira coefficient 
b  = constant in Eq. (2), 9.8(10-24 ,mL2/t2, keV3.2 
E  = energy level, mL2/t2, keV 
I   = detected X-ray intensity, 1/t, counts/min 

I0   = incident X-ray intensity, 1/t, counts/min 
? ? ?= density, m/L3, gm/cc 
µ   = linear attenuation coefficient, L-1, cm-1 
x   = thickness of material, L, mm 
Z   = atomic number 

CT  = CT number 
HU  = Hounsfield unit 

R  = linear correlation coefficient 
NN CT[i] = set of neural net predictions using i number of CT averages 
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