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ABSTRACT 
It is now well known that counter current spontaneous imbibition can be scaled in time to 
account for the effects of permeability, porosity, interfacial tension, and geometry. This 
paper reports on a theoretical study to investigate the dependence of the time-scale factor 
on the viscosities of the two fluids. The current best correlations predict that the time-
scale factor depends on the square-root of the product of these two viscosities. Although 
this correlation agrees well with much published data, the quality of the predictions 
deteriorates as the values of the viscosities diverge. Furthermore, there is no mechanistic 
explanation for the correlation. Using a newly developed approximate analytical solution 
for counter-current spontaneous imbibition into a linear sample (a right cylinder with the 
radial face and one end face sealed), a detailed examination of the influence of the two 
viscosities was performed and compared with the square-root model. The mechanism of 
spontaneous imbibition was then analyzed assuming plug flow of the invading phase to 
obtain a new form for the viscosity correlation. Although this correlation has the correct 
shape for the viscosity dependence, it does not agree with the data over the range of 
viscosities studied. However, a simple heuristic change to the model produced a third 
correlation equation that gives excellent agreement with all the data. There is no 
mechanistic explanation for this third correlation; however, it is based on the limiting 
forms of the analytical solution as the mobility ratio becomes much larger than unity and 
much smaller than unity. 
 
 
INTRODUCTION 
Several authors [1-3], have shown both experimentally and analytically that linear, 
counter-current, spontaneous displacement of a non-wetting fluid by a wetting fluid in a 
porous media results in a series of saturation profiles that are self-similar. Furthermore, 
several authors have shown that the profiles scale with the square-root of time (see [4] for 
a recent review). Recent work [5] has shown that these two conditions lead to an 
approximate, analytical solution of this problem until the penetrating wetting fluid 
contacts the no-flow boundary. This solution is general in nature, allowing for any shape 
of capillary pressure and relative permeability functions. In the present paper, this 
solution has been used to determine the dependence of spontaneous imbibition on the 
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viscosities of the two fluids as well as the shapes and magnitudes of the capillary pressure 
and relative permeability curves. This work leads to a suggested function to correlate 
experimental results. 
 
 
THEORY 
The approximate solution derived in [5] is valid for counter-current, spontaneous 
imbibition of a wetting phase against a non-wetting phase in a homogeneous porous 
medium for the case in which the fluids are incompressible (including compressible 
fluids with pressure gradients significantly less than the absolute pressure) and 
immiscible. Gravity effects are neglected. The process was developed for the case of 
linear flow parallel to the axis of a columnar sample of infinite length with the columnar 
surface sealed. For a finite length sample, the solution is valid until the wetting phase 
front reaches the downstream end of the sample. 
 
An outline of the solution follows. The basic equations governing counter-current, 
spontaneous imbibition flow are the generalized Darcy law, the capillary pressure 
definition, and the continuity equations. Combining these equations results in an equation 
for the wetting phase: 
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where wq  is the flow rate of the wetting phase A is the cross-sectional area, wS is the 
saturation of the wetting phase,  x  is the coordinate along the axis of the sample, and 
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where K  is the permeability, rwk  and rnwk  are the relative permeabilities ( w  for the 
wetting phase and nw  for the non-wetting phase,  wµ  and nwµ  are the viscosities, and cP  
is the capillary pressure. 
 
The classic frontal advance theory leads to the equation 

tw

w

S S
q

At
x

w

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

φ
1        (3) 

where the left-hand side is the speed at which a point with a given saturation proceeds 
and the derivative on the right-hand side defines the gradient of velocity with saturation.  
Here t  is time and φ  is porosity.  
 
The basis of the approximate solution is the fact that, if the solution is self-similar, then 
the saturation profile must simply stretch along the x-direction with time. We 
approximate the condition for such stretching by 
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where ( )ta  is a function of time and Swo is the saturation of the wetting phase at the open 
face. If Swo is assumed as constant throughout the displacement it may be shown that 
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For a self-similarity solution, the functional dependence of the position of the front 
( ( )tx f ) on t is t . Therefore, in order for a solution to exist for the problem, a(t) must 
have the form  
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This leads to the following equation for the constant ac in terms of the saturation at the 
front, wfS  
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where the mean saturation is given by 

( ) ( )

( ) ( )∫

∫

−−−

−−−
=

wf

wo

wf

wo

S

S
w

wiwiwowwwo

w

S

S
w

wiwiwowwwo

ww

w

dS
SSSSSS

M

dS
SSSSSS

SM

S

22
2

22
2

    (8) 

In the present paper, the relative permeability functions will be assumed to be Corey 
curves  
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and 
rwsrwerw kkk =          (11) 
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where wn  and nwn are the Corey exponents, rwek  and rnwek  are the relative permeability 
endpoints, and wrS  and nwrS  are the residual saturations. The capillary pressure function 
will be assumed to be of the form 
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where ctP  and cpP  are constants. The capillary pressure function has the derivative 
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Defining the mobility ratio as 
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and making the appropriate substitutions, the saturation function becomes 
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For the case where the initial saturation of the wetting phase is zero, the mean saturation 
becomes 
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and the time scale factor becomes 
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This equation has two limits. When the mobility ratio becomes much less than unity 
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In this case, the viscous resistance is entirely due to the wetting phase; this is the 
air/liquid case. When the mobility ratio becomes much greater than unity  
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In this case the viscous resistance is entirely due to the non-wetting phase; this is the 
water/viscous oil case. 
 
 
SCALING WITH VISCOSITY 
Figure 1 shows the scale factor given by Eq. 18 for a range of mobility ratios between 
0.0000001 and 1000000, and for Corey exponents of 1,2,3,4 and 5. It is noted that only 
five points appear at the two limits, while up to 25 points appear for mid-range values of 
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mobility ratio. The reason for this is that the two limits meet the criteria for the limiting 
equations described above. Hence, in the low mobility ratio range, the results are 
insensitive to the Corey exponent for the non-wetting phase, while in the high mobility 
range, the results are insensitive to the Corey exponent for the wetting phase. In the mid-
range, the results are sensitive to both exponents.   
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Figure 1 The variation of the scaling factor with the mobility ratio for relative 
permeability curves having Corey exponents between 1 and 5. The uppermost 
points are for nw=1, nnw=1; the lowermost points are for nw=5, nnw=5. 

 
In order to explore the sensitivity of this viscosity scale factor, results typical for a Berea 
sandstone core will be used (see Li, Ruth, Mason and Morrow [6]). In this case, 3.0 and 
2.6 will be assumed for the non-wetting and wetting Corey exponents respectively. The 
end-point relative permeabilities are assumed as 0.6 and 0.04 for the non-wetting and 
wetting phases respectively. The value of cpP will be taken as 2007 kPa. Correlations will 
be studied for wetting phase viscosities of 1 cp and 10 cp, and varying values of the non-
wetting phase viscosity from 0.001 cp to 10000 cp. Therefore, variations in mobility ratio 
will be achieved by varying both viscosities. We will assume an initial water saturation of 
zero, a porosity of 0.219, a permeability of 1.064 Darcys, a saturation of 0.48 at the open 
face, and a saturation at the front of 0.14. 
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The analysis described above allows the derivation of a scaling equation for time. The 
production is given by 
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where (qw)o is the flow at the open face. From Eqs. 5 and 6, this flow rate is given by 
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It follows that 
tASaQ wocw
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and using Eq. 18 
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Scaling the production with the movable pore volume 
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where bL  is the sample length. Leverett has shown that the capillary pressure can be 
scaled using 
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Therefore Eq. 26 may be written as 
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Figure 2 The correlation between the values of the time-scaling factor obtained by 
simulation and from the analytical equation. The solid line shows the 1:1 
correlation; the solid circles are the cross plotted values. Low values correspond 
to high values of displaced phase viscosity whereas high values correspond to low 
values of displaced phase viscosity. 

 
It follows that we can define a non-dimensional time as 
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Figure 2 shows the results of Eq. 28 compared with results obtained by numerical 
simulation (see [7,8] for details of the simulation method). The agreement between the 
two methods is generally very good. There is some departure at low values of the graph. 
This is the region of very high displaced phase viscosity. This figure indicates that the 
analytical solution, although approximate, can be used to derive correlation equations for 
various parameters. 
 
If the only variable of interest is the viscosity, then the direct dependence of scaling on 

wµ  is given explicitly in Eq. 28, and all other dependence on viscosities will be contained 
in the term 
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Therefore, Eq. 29 rather than Eq. 18 can be used to investigate the viscosity effect. 
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Figure 3 The fit achieved using the square-root of the product of the viscosities. 
The solid line represents the predictions from Eq. 29 while the dashed line 
represents the predictions from Eq. 30. The curves have been matched at a 
viscosity ratio of unity. 
 

Figure 3 shows the results of this analysis. In this plot, the solid line represents the 
theoretical points predicted by Equation 29. The dashed line, which is straight in this 
case, represents the predictions from the well known correlation represented by the 
equation 
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These points have been scaled such that the two data sets agree for a viscosity ratio of 
unity. Figure 3 suggests that Eq. 30 should give reasonable estimates over at least three 
orders of magnitude of mobility (viscosity) ratio in the region of a mobility ratio of unity. 
 
A more sophisticated model can be obtained by considering a bundle of almost equal 
radius tubes, hydraulically connected sideways. The tubes are assumed to be almost equal 
in size because any appreciable size distribution complicates the analysis significantly 
(see [9]). Some fraction of the tubes, f, imbibe the wetting phase and the remaining 1-f 
tubes carry non-wetting phase back to the surface (f will be the saturation of the wetting 
phase in the core when the front reaches the end of the sample). There is a capillary 
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pressure generated at the saturation front of 2σ/r and a bubble pressure ∆Pc generated at 
the face of the bundle as the non-wetting phase is produced. At time t let the wetting 
phase front penetrate a distance L into the tube bundle. This system is shown 
diagrammatically in Figure 4. 
 

 
 

Figure 4 The bundle-of-tubes model for spontaneous countercurrent imbibition. 
 
 
The pressure profile is also shown in Figure 4. The bubble pressure is assumed to be 
small, as its only effect is to slow the whole process. We identify Pde as the pressure in 
the dead volume ahead of the front; this is the pressure which drives the wetting phase 
from the sample. Using the Poiseuille equation, the mean velocity of the wetting phase in 
one wetting phase filled tube is  
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while the mean velocity of the non-wetting phase is 
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If there are a total of N tubes, then the flow of the wetting phase is wfUrN 2π  and this is 
equal to the flow of the non-wetting phase ( ) nwUfrN −12π . Equating these flows, 
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where F is proportional to the velocity of the front. This is one equation in two 
unknowns, Pde and F. We postulate that Pde and F are governed by the condition that F is 
maximized, that is, we will determine the condition for the fastest moving front. 
Differentiating the two equations constituting Eq. 33 and setting each to zero, results in 
the conditions 
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When nwµ is zero, f=1, when wµ is zero, f=0, and when wnw µµ = , f=0.5. These values 
seem reasonable. The velocity of the wetting phase is the rate at which the front 
advances. Therefore, 
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and after performing the integration 
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The total volume that has flowed at time t is fLrN 2π and 
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The total pore volume is bLrN 2π ; therefore the fraction of pore volume recovered is  
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This equation implies a viscosity dependence of  
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Figure 5 The fit achieved using the tube bundle analysis. The solid line represents 
the predictions from Eq. 29 while the dashed line represents the predictions from 
Eq. 39. 

 
Figure 5 shows this dependence with the curve matched at a viscosity ratio of unity. The 
trends of this curve are roughly correct. However, the limit given by Eq. 20 suggests that 
it is not the ratio of the viscosity but the mobility ratio that should appear in this 
equation.  Furthermore, when the mobility ratio is large, it should be raised to the power 
of minus one.  
 
The above discussion suggests a correlation of the form  
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Figure 6 shows the results for m=3. The agreement is very good, particularly in view of 
the fact that the two lines were not “matched” at any point. 
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Figure 6. The fit achieved using the tube bundle analysis modified to conform 
with the limits to Eq. 29. The solid line represents the predictions from Eq. 29 
while the dashed line represents  the predictions from Eq. 41 with m=3. 
 

 
The last two integrals depend only on the normalized shapes of the relative permeability 
curves, and the saturation at the face. If these curves are known, then there is no need for 
the correlation equation given in Eq. 41 because the scale factor can be calculated 
directly from Eq. 28 for any mobility ratio. However, Eq. 41 implies that in the absence 
of information on the relative permeability and capillary pressure curves, the correlation 
of data for a given rock type should be accommodated by an equation of the form 
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where 1C , 2C , and m are fitting parameters. 
. 
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CONCLUSIONS 
The present paper provides a correlation that works for spontaneous imbibition into Berea 
sandstone for all combinations of fluid viscosities. The analytically derived scaling 
equation is  
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In the absence of information on the relative permeability and capillary pressure curves, 
this equation can be replaced by the empirical equation  

tC
L
CKt

m
m

w

nw

bw ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+=′

−1

22
1  1

µ
µ

µ
σ

φ
    

 
REFERENCES 
1. Chen, Z.-X., 1988, Some invariant solutions to two-phase fluid displacement 

problems including capillary effects, SPE Reservoir Engineering, 3, pp. 691-700. 
2. McWhorter, D.B. and Sunada, D.K., 1990, Exact solutions for two-phase flow, Water 

Resources Research, 26, pp.399-413.  
3. Li, Y., Morrow, N.R., and Ruth, D.W., 2003, Similarity solution for linear counter-

current spontaneous imbibition, Journal of Petroleum Science and Engineering, 39, 
pp.309-326. 

4. Mason, G. and Morrow, N.R.: “Recovery of oil by spontaneous imbibition”, Current 
Opinion in Colloid & Interface Science, 6, p. 321-337, 2001. 

5. Ruth, D.W., Li, Y., Mason, G., and Morrow, N.R., (submitted), An analytical solution 
for counter-current spontaneous imbibition, Transport in Porous Media. 

6. Li, Y., Ruth, D.W., Mason, G., and Morrow, N.R., “Pressure acting in counter-current 
spontaneous imbibition”, 8th International Wettability Symposium, Houston, Texas, 
May 2004. 

7. Ruth, D.W., Morrow, N.R., Li, Y. and Buckley, J.S, “A simulation study of 
spontaneous imbibition”, Proc. of the Int. Sym. of the SCA, Abu Dhabi, UAE, Oct. 
2000. 

8. Ruth, D.W., Mason, G. and Morrow, N.R., “A numerical study of the influence of 
sample shape on spontaneous imbibition’, Proc. Of the Int. Sym. Of the SCA, Pau, 
France, September, 2003. 

9. Ruth, D.W. and Bartley, J., “A perfect-cross-flow model for two phase flow in porous 
media”, Proc. of the Int. Sym. of the SCA, Monterey, California, Oct. 2002. 

 
 
Acknowledgements: Support for this work was provided by the National Science and 
Engineering Research Council of Canada, British Petroleum/Amoco, Chevron, ELF/Total/Gas de 
France/IFP, JNOC, Phillips, Statoil, the Enhanced Oil Recovery Institute of the University of 
Wyoming, and the National Petroleum Technology Office of the U.S. Department of Energy. 




