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Abstract 
Recently it has become a common practice to construct 3D coreflooding simulation 
model to interpret water displacement experiments conducted under X-ray CT scanning. 
The unknown grid block parameters i.e. kro/krw and Pc curves are required to be 
optimized to get reasonable matching with experimental data such as changes of grid 
block water saturation. In order to evaluate the matching process efficiently a new 
automated history-matching program has been developed. This program applies Genetic 
Algorithm to optimize several coefficients for normalized kro/krw and Pc curves for each 
litho-facies. 

Several blind tests were carried out on hypothetical coreflooding models by changing the 
conditions of velocity and wettability to investigate the degree of accuracy and limitation 
of the program. The result of the reproducibility of the relative permeabilities was 
excellent for both water-wet and oil-wet cases regardless the velocity of coreflooding. On 
the other hand, the degree of reproducibility was not necessarily satisfactory for capillary 
pressure curves especially in high velocity case. 

Sensitivity of the controlling parameter in Genetic Algorithm such as crossover rate and 
mutation ratio was also investigated. The suitable values are estimated, though no simple 
trend was found. 

The program was finally applied to the interpretation of actual water displacement tests 
on oil-wet carbonate cores. The program successfully gave a reasonable set of kro/krw 
and Pc curves for each litho-facies and demonstrated its capability of grid block 
parameter optimization. 

Introduction 
One of the most important parameters that are taken from core experiment would be 
relative permeability. As it is generally agreed by laboratory researchers, it is difficult to 
get correct relative permeability because of the effect of capillary and gravity forces. 
Recently, it has become a common practice to construct a 3D core flooding simulation 
model to reproduce an experiment data. Interpretation results are utilized to generate 
representative relative permeabilities on the core. This method can deal with all kinds of 
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effects such as capillary and gravity forces. However, no efficient procedure has been 
established. Especially in history-matching process, the result depends on individual 
engineer’s skill and it takes long time to reach the best match. Furthermore, there is no 
guarantee to assure that it is the optimum solution. In order to solve those problems, a 
new automated history matching program was developed based on Genetic Algorithm 
and an interpretation procedure of core flood experiment under X-ray CT scanning was 
proposed. 

Genetic Algorithm 
There are many methods, how to find some suitable solution for certain problem. We are 
usually looking for the best solution in its search space. However, if the search space 
spread widely i.e. the problem is complicate, some methods show a local extreme 
(minimum, maximum) point as a solution. Genetic Algorithm is one of the most suitable 
methods for complicate problems. 

In petroleum engineering, the Genetic Algorithm has been utilized several times. David 
E. Goldberg applied the algorithm to the solution of two phase pipeline flows 
optimization (i). J. H. Fang was used the algorithm for predicting porosity and 
permeability from compositional and textural parameters of sandstone, and comparing 
the results with those obtained from linear regression analysis and nonlinear least-squares 
method (ii). E.R. Jefferys suggested future potential of the algorithm in petroleum 
engineering (iii). Xuefei Sun applied the algorithm to automatic history matching of core 
flooding experiment to estimate Kr/Pc curves (iv). Some fundamentals of the algorithm are 
introduced in an internet homepage (v) (vi). The page can be used for learning about the 
algorithm without any previous knowledge from the area. 

In natural world, one organism that fits to an environment can survive longer and its 
genetic information is transmitted to new offspring by recombining (crossover) and 
mutating those genes. The fitness of an organism is measured by success of the organism 
in its life. Genetic Algorithm is inspired those Darwin’s theory about evolution.  

Figure 1 shows workflow of Genetic Algorithm. The algorithm is started with a set of 
solutions (represented by chromosomes) called population. Solutions from one 
population are taken and used to form a new population. This is motivated by a hope, that 
the new population will be better than the old one. Solutions that are selected to form new 
solutions (offspring) are selected according to their fitness - the more suitable they are for 
certain condition the more chances they reproduce. This is repeated until some condition 
(for example number of populations or improvement of the best solution) is satisfied. 

In Genetic Algorithm, the most import part is how to create new population i.e. how to 
look for new solutions. Repeating following 4 steps creates new populations. 

Selection 
Two parent chromosomes are selected from a population according to their fitness. The 
better the chromosomes are, the more chances to be selected they have. There are lot of 
selection method such as ranking selection and steady-state selection. For our case, elite 
selection and roulette selection are mainly adopted. Elite selection is name of method, 
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which first copies the best chromosome to new population. On roulette selection, every 
chromosome in the population has its place (probability) big accordingly to its fitness 
function like roulette wheel shown in Figure 2. Then a marble is thrown there and selects 
the chromosome. Chromosome with bigger fitness will be selected more times. 

Crossover 
Crossover selects genes from parent chromosomes and creates a new offspring. For 
binary encoding, the simplest way to do this is to choose randomly some crossover point 
and copy everything from a first parent before this point and do some from the second 
parent after this point. By assigning a crossover probability, crossover is decided to 
perform or not. If no crossover was performed, the offspring is an exact copy of the 
parents. 

Mutation 
Mutation is to prevent all solutions in population from falling into a local optimum of 
solved problem. Mutation changes randomly the new offspring. For binary encoding we 
can switch a few randomly chosen bits from 1 to 0 or from 0 to 1. By assigning a 
mutation probability, mutation is decided to perform or not at each bits (position in 
chromosome). 

Accepting 
In accepting, new offspring is replaced in a new population. 

Application to core flood simulation 
In applying Genetic Algorithm to automated history-matching program for core flood 
experiments, it is necessary to consider how to describe the problem and evaluate 
solution in equations. The objective of the program is that the unknown grid block 
parameters i.e. kro/krw and Pc curves are required to be optimized by getting reasonable 
matching with experimental data such as changes of grid block water saturation and 
differential pressure. In this program, normalized relative permeability and capillary 
pressure curves are set to as following equations. 

 nw
wrw RkrwSK 1max)( =  (1) 

 no
wro RkroSK 2max)( =  (2) 

For water wet 

 ( )[ ]cdRRdccRPcmaxP ba
c ++−−+−= 221 1  (3) 

For oil wet 

 ( )[ ]cdRcRRdcPcmaxP ba
c +−++−= 1211  (4) 

For intermediate wet 

 ( ) ( )[ ]dcdRRdcRdcPcmaxP ba
c +++−−++−= 221 211  (5) 
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Eq. (1) and (2) are Corey-type formulations (vii) and include 4 unknown parameters (no, 
nw, kromax, krwmax). Eq. (3), (4), and (5) are newly defined equations which enable to 
express Pc curve of not only water-wet but also oil-wet and intermediate wet with 5 
unknown parameters (a, b, c, d, Pcmax). 

In this program, population consists of n pieces of chromosomes (solutions). Each 
chromosome contains information of 9 coefficients that are shown in equation (1)-(7) as 
unknown parameters. Each parameter is encoded to one binary string. All parameters are 
joined together and show one chromosome. Figure 3 shows example of chromosome. 

In order to evaluate matching degree of accuracy, a fitness function was defined as 
follows.   
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Fitness function is calculated by comparing difference between experiments results and 
simulation results for every time step. Water saturations are compared for every grid 
block in eq. (8), because water saturation data are taken for each grid block in 
experiments under X-ray CT scanning. On the other hand, only one differential pressure 
is taken from inlet and outlet in each time step. In order to meditate difference of 
dimension between water saturation and differential pressure, there are lot of weight and 
flag shown as W and A respectively. 

Verification of the program 
Model description 
Before applying the program to real experiments, several blind tests were carried out on 
hypothetical coreflooding model by changing the conditions of wettability to investigate 
the degree of accuracy and limitation of the program. A 1D core model that imitated real 
core was constructed. Parameters of this model are shown in Table 1. 

Wettability conditions 
The model was simulated on 0.05 [cc/min] injection rate, which assumed same velocity 
of fluid movement in real reservoir (1ft/day), and the water saturation and the differential 
pressure data are taken from the simulation result as experiment data. Then, Genetic 
Algorithm program was applied. Genetic Algorithm parameters that were used in those 
run are shown Table 2. The results are shown in Figure 4. Genetic Algorithm uses 
random number such as crossover rate and mutation rate. Results are different even 
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though the runs use same model and parameter range. Hence the runs are repeated 20 
times for each wettability condition. Black line is best results.  

Gray line is the average of all cases. In all wettability conditions, the degree of the 
matching in the best case is excellent. On the other hand, it is slightly bad in the average 
of all cases. It means that 20 times runs are enough to get reasonable kr/Pc curves, but 
only one run is not enough. 

Velocity conditions 
Injection rate are changed to 0.5 [cc/min] (high velocity case) that is 10 times of low 
velocity case. The results are shown Figure 5. The result of the reproducibility of the 
relative permeabilities was excellent for the best case regardless the velocity of injection. 
On the other hand, the degree of reproducibility was not necessarily satisfactory for 
capillary pressure curves in high velocity case. It could be explained that the effect of 
capillary force relatively decreased in high velocity case, which resulted in worse 
matching compared with in low velocity case. 

3D model 
Finally, the verification of the program on more complex model that was expanded to the 
actual 3D with 2 rock types was carried out. The dimension of model is change to (i j, k) 
= (13, 5, 5). The model composed of 5mm length cubes (DX = DY = DZ = 0.5[cm]). 
Each grid block porosity and saturation end points were defined by results of X-ray CT 
experiments. Permeability distribution is generated based on air-permeability obtained by 
mini-permeameter and modified to match with experimental results in single-phase tracer 
test. Front advancement in single-phase tracer test could reflect the heterogeneity of 
permeability distribution of the core. Two lithofacies (Rock Type) distribution was 
determined by detailed core examination by geologist on the plug core that was cut into 
several slices after water flood experiments. Hypothetical kro/krw and Pc curves are 
defined as triangle point in Figure 6. The automated history-matching program was 
applied to the model. The matching results are shown in Figure 6. As the results of 
matching with 3D model, the reproducibility of the relative permeabilities was excellent 
especially for the high velocity case and also for capillary pressure curves especially in 
low velocity case. For relative permeability curves, band of 20% confidence interval for 
20 runs in high velocity narrower than that in low velocity case. On the other hand, for 
capillary pressure curves, band of 20% confidence interval in high velocity wider than 
that in low velocity case. It could be also explained that the effect of capillary force 
relatively decreased in high velocity case, which resulted in worse matching compared 
with in low velocity case as sensitivity of velocity conditions with 1D homogeneous 
model. 

The interpretation combining the low and the high velocity cases drastically increase the 
quality of matching for both of relative permeabilities and capillary pressures. 

Sensitivity of Genetic Algorithm parameter 
Sensitivity of the controlling parameters in Genetic Algorithm was investigated. The 1D 
model shown in Table 1 was used. Oil wet and low velocity conditions are assumed. 
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Sensitivity of population size 
It may be surprising, that very big population size usually does not improve performance 
of Genetic Algorithm (in meaning of speed of finding solution). In general, it is reported 
that good population size is about 20-30, however, sometimes sizes 50-100 are reported 
as best. It depends on the problem to solve. Sensitivity of population size was 
investigated. Three population sizes (25, 50, 100) were tested. Generation size was 
adjusted to same total run (population times generation). Genetic Algorithm performance 
much depends on crossover rate and mutation rate. So for each population size, 4 
crossover rates (0.4, 0.6, 0.8, 1.0) and 4 mutations rates (0.000 0.005 0.0010 0.0020) 
were tested. Figure 7 and Figure 8 shows the results of sensitivity of population. Figure 
7 show fitness function of best case in 20 runs. Figure 8 show fitness function of average 
of 20 runs. From both figures, we can recognize that population size 50 is reasonable, 
because the black area which show low fitness function is dominant. The results showed 
also that more population size goes to monotone color. That means the dependence on 
crossover rate and mutation rate decrease.  

Sensitivity of crossover rate and mutation rate  
Crossover and mutation are two basic operators of Genetic Algorithm. Performance of 
Genetic Algorithm much depends on them. Crossover rate generally should be high, 
about 80%-95%, however, some results show that for certain problems crossover rate 
about 60% is the best. On the other hand, mutation rate should be very low. Best rates are 
reported to be about 0.5%-1%. In order to search best crossover rate and mutation rate, 
sensitivity runs were carried out. Population size is fixed to 50 because of results of 
sensitivity run in previous section. Results of sensitivity of crossover rate shown in 
Figure 9. It might be difficult to find out suitable crossover rate because of scattering 
values. But a second look confirms that the fitness functions of the best case locate 
around 0.8 though the average fitness functions are almost constant.  
Results of sensitivity of mutation rate are shown in Figure 10. Both fitness functions of 
the best case and the average locate around 0.01-0.03. 

Application to actual water displacement tests 
The program was applied to the interpretation of actual water displacement tests on 
oil-wet carbonate plug cores. A total of 3 water displacement tests ware carried out on the 
1 inch-diameter plug samples. The tests were subjected to the detail interpretation by 3D 
coreflood simulation model. Each model was composed of 5mm length cubes and 
constructed based on the data such as X-ray CT porosity/ Swi/ Sor, mini-permeameter 
permeability and distribution on 3 lithofacies. The contents of lithofacies and the average 
end points for the cores were shown Table 3.  

Results of sensitivity runs with the program show that reproducibility of the relative 
permeabilities become worse for the low velocity case and also for capillary pressure 
curves in high velocity case. However, the excellent result can be taken by repeating run 
in homogeneous (1D) model. 

Figure 11 shows kro/krw and Pc curves of 3 lithofacies derived by history-matching. In 
order to improve the accuracy and efficiency of the interpretation, the program was 
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started from plug-1 that has almost homogeneous lithofacies as shown in Table 3. We 
assumed that the reproducibility for plug-1 should be high because of its homogeneity. 
The runs for plug-1 were repeated 20 times and the kro/krw and Pc curves of litho-1 were 
optimized first. The results proved that the assumption was right by narrow band of 
confidence interval for litho-1 as shown in Figure 11. Then plug-2 and plug-3 were 
interpreted using curves of litho-1 to get kro/krw and Pc curves of litho-2 and litho-3 
respectively. Except relative permeability for litho-3, the degrees of confidence for 
derived curves were high as shown in Figure 11 which have narrow ranges of confidence 
interval.  

Figure 12, Figure 13 and Figure 14 are examples of the results of matching on the 
plug-2.  

These figures show excellent match of front advancement during water flood test on the 
plug cores. Pressure difference between each end of the core was also matched. The 
program successfully gave a reasonable set of kro/krw and Pc curves for each litho-facies 
and demonstrated its capability of grid block parameter optimization. 

Conclusions 
It has been demonstrated that the developed program is a powerful tool in 
history-matching of model for core flood experiment under X-ray CT scanning. The 
technique enabled to optimize kro/krw and Pc curves of lithofacies. The method can be 
used to determine the representative core-scale kro/krw and Pc curves. 

 

1. The automated history-matching program for water flood experiments was developed 
based on Genetic Algorithm 

2. The program is suitable to all wettability conditions. 

3. In simple (1D) model, the result of the reproducibility of the relative permeabilities 
was excellent regardless the velocity of injection. On the other hand, the degree of 
reproducibility was not necessarily satisfactory for capillary pressure curves in high 
velocity case. It needs to repeat run and select the best case. 

4. In complex (3D-2lithofacies) model, the result of the reproducibility of the relative 
permeabilities was excellent especially for the high velocity case and also for capillary 
pressure curves especially in low velocity case. The interpretation combining the low 
and the high velocity cases drastically the quality of matching. 

5. It was suggested that 0.8 and 0.01 are suitable values for crossover rate and mutation 
rate respectively, though no simple trend was found. 

6. The program was successfully applied to the interpretation of the actual water 
displacement tests on several oil-wet carbonate plug cores to derived kro/krw and Pc 
curves of lithofacies. 
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Nomenclature 
  ijktA = Flag for active cell @(i, j, k, t) 

  a = Unknown parameter for capillary pressure 

  b = Unknown parameter for capillary pressure 

  c = Unknown parameter for capillary pressure 

  d = Unknown parameter for capillary pressure 

 exp
tdp = Differential pressure of experiment @(t) 

 sim
tdp = Differential pressure of simulation @(t) 

  rok = Oil phase relative permeability 

kromax = Oil phase relative permeability @ wiS (unknown parameter) 

  rwk = Water phase relative permeability 

krwmax = Water phase relative permeability @ orS (unknown parameter) 

 no = Unknown parameter for oil phase relative permeability 

 nw = Unknown parameter for water phase relative permeability 

 cP = Capillary pressure 

 PV = Pore volume 

  wS = Water saturation 

 wiS = Initial water saturation 

 orS = Critical oil saturation 
exp
ijktS = Grid block water saturation of experiment @(i, j, k, t) 

 sim
ijktS = Grid block water saturation of simulation @(i, j, k, t) 

  1W = Weight of time for dp  

  2W = Weight of time for wS  

  dpW = Weight of dp   

  swW = Weight of wS  

  ijktW = Weight of cell @(i, j, k, t) 
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Table 1:  Hypothetical model parameters 
 I=1,13 (well) I=2,12 I=3-11 
Dimension (i, j, k) = (13, 1, 1) 
Total length [cm] 6.05 
DX [cm] 0.5 0.25, 0.305 0.5 
DY = DZ [cm] 2.22 2.22 
Porosity 0.0001 0.33 
Permeability [mD] 1000000 13.6 
Saturation end point Swi = 0, Sor =0 Cross section average on X-ray CT experiments 
kro/krw and Pc curves kr: straight, Pc: 0 Hypothetical curves 
 

Table 2:  Genetic Algorithm parameters 
Population Size 50 
Max Generation 50 
Crossover Rate 0.800 
Mutation Rate 0.010 
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Table 3:  Contents ratio of typical lithofacies and average end point 
 Plug 1 Plug 2 Plug 3 
 Contents 

Ratio 
Average 

Swi 
Average

1-Sor 
Contents

Ratio 
Average

Swi 
Average

1-Sor 
Contents

Ratio 
Average 

Swi 
Average

1-Sor 
Litho-1 98.0% 0.122 0.657 53.1% 0.120 0.715 78.9% 0.220 0.799 
Litho-2 1.2% 0.105 0.278 46.5% 0.106 0.725 0.6% 0.021 0.488 
Litho-3 0.8% 0.078 0.649 0.4% 0.09 0.641 20.6% 0.206 0.777 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Start] Generate random population of n chromosomes 

[Fitness] Evaluate the fitness f(x) of each chromosome x in 
the population 

[New population] Create a new population by repeating 
following steps until the new population is complete 

1. [Selection] 
2. [Crossover] 
3. [Mutation] 
4. [Accepting] 

[Replace] Use new generated population for a further run of 
algorithm 

[Test] If the end condition is satisfied, stop, and return the 
best solution in current population 

[Loop] Go to step [Fitness] 

Figure 1:  Outline of the Genetic Algorithm
 

Figure 3:  Example of chromosome coded 
by 6 bits of 9 parameters

 101101 101101 110110 100101 110101 011110 111010 101100 101101 

kromax krwmax   no    nw   Pcmax   a      b      c      d 
Chromosome 

Figure 4:  Matching results on some 
wettability conditions 
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Figure 5:  Difference of matching 
results by velocity 
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Figure 9:  Sensitivity of crossover rate 
 (Mutation rate = 0.01) 
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Figure 10:  Sensitivity of mutation rate 
(Cross over rate = 0.80) 

Figure 6:  Matching results on 3D model with 2 rock types   
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Figure 7:  Sensitivity of population 
size (fitness function of best in 20 runs)
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Figure 8:  Sensitivity of population size 
(fitness function of average of 20 runs)  
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Figure 12:  Matching results of differential 
pressure  (Plug-2) 
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Figure 13:  Matching results of slice 
water saturation  (Plug-2) 

Figure 14: Matching results of grid block water saturation
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Figure 11:  kro/krw and Pc curves of 3 lithofacies derived by matching 
             Derived curve               20%confidence interval for 20 runs                100% confidence interval for 20 runs 
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