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ABSTRACT 
Pore-scale network modeling can predict multiphase flow properties with arbitrary 
wetting conditions if the network represents the geology of the sample accurately. Such 
pore-scale modeling uses topologically disordered networks that realistically represent 
the pore structure. To generate the network it is first necessary to have a 
three-dimensional voxel-based pore-space representation that is constructed by either a 
direct imaging technique such as micro-CT scanning, stochastic methods, or object-based 
approaches. Micro-CT scanning is the most promising among these three approaches 
since it is the most direct. However, its resolution – a few microns – means that for many 
rocks, particularly carbonates, significant porosity cannot be imaged. Furthermore, 
alternative approaches, such as reconstruction through simulating the geological processes 
by which the rock was formed, such as sedimentation and diagenesis, may be problematic 
for many materials whose depositional and diagenetic history is uncertain or complex. 
Statistical reconstruction is more general and is not limited by the pore size. Statistics of 
the pore space are obtained from readily available experimental data such as thin-section 
images. Using only single and two-point statistics in the reconstruction often 
underestimates the pore connectivity, especially for low porosity materials. 
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We use multiple-point statistics for pore space reconstruction that preserves higher-order 
information, describing the statistical relation between multiple spatial locations. This is a 
general method that gives images that preserve typical patterns of the void space seen in 
thin sections. The method is tested on a carbonate sample from the Middle East. 
Permeability is predicted directly on the 3D images using the lattice Boltzmann method. 
The numerically estimated results are in good agreement with experimentally measured 
permeability. Furthermore, this method provides an important input for the creation of 
geologically realistic networks for pore-scale modeling to predict multiphase flow 
properties. 
 
INTRODUCTION 
Transport properties such as relative permeability and capillary pressure functions define 
flow behavior in porous media. These functions critically depend on the geometry and 
topology of the pore space, the physical relationship between rock grains and the fluids, 
and the conditions imposed by the flow process. A quantitative prediction of 
petrophysical properties in porous media, such as reservoir rocks, frequently employs 
representative microscopic models of the microstructure as input. It is necessary that 
proper pore structural information is supplied as input to predict fluid flow properties 
using network models [1] or other approaches, such as the lattice-Boltzmann method [2]. 
 
The reconstruction of 3D porous media is of great interest in a wide variety of fields, 
including earth science and engineering, biology, and medicine. Several methods have 
been proposed to generate 3D pore space images. A series of 2D sections can be 
combined to form a 3D image. This is a laborious operation limited by the impossibility 
of preparing cross sections with a spacing of less than about 10µm [3]. However, recent 
advances, such as the use of a focused ion beam [4, 5] allow higher resolution images 
(sub-micron size) to be constructed. Another approach is to use non-destructive X-ray 
computed microtomography [6] to image a 3D pore space directly at resolutions of 
around a micron. However, this resolution is not sufficient to image the sub-micron size 
pores that are abundant in carbonates, which can be imaged by 2D techniques such as 
scanning electron microscopy (SEM). The sub-micron structures of real rocks have been 
studied using laser scanning confocal microscopy [7]. It has, however, limited ability to 
penetrate solid materials. In the absence of higher resolution 3D images, reconstructions 
from readily available 2D microscopic images are the only viable alternative. 



SCA2004-24 3/13
 
 

Numerical reconstructions 
2D high-resolution images provide important geometrical properties such as the porosity 
and typical patterns. Based on the information extracted from 2D images, one promising 
way is to reconstruct the porous medium by modeling the geological process by which it 
was made [8-10]. Although the process-based reconstruction is general and possible to 
reproduce the long-range connectivity, there are many systems for which the 
process-based reconstruction is very difficult to apply. For instance, for many carbonates 
it would be very complex to use a process-based method that mimics the geological 
history involving the sedimentation of irregular shapes followed by significant 
compaction, dissolution and reaction [11]. In these cases it is necessary to find another 
approach to generate a pore space representation. One method is to use statistical 
techniques to produce a 3D image from 2D thin section image analysis, as mentioned 
before. Traditionally two-point statistics have been used to achieve this. However, these 
images often fail to reproduce the long-range connectivity of the pore space, especially 
for low porosity materials. We have shown the ability to reconstruct a geologically 
realistic pore-space structure by the multiple-point statistical technique [12], which uses 
higher order information [13, 14]. One key aspect of the work is the proper selection of 
the multiple-point statistics to reproduce satisfactory images. In the previous paper [12], 
we studied sandstone and showed that the long-range connectivity of the pore space was 
appropriately reproduced. In this paper, we apply the method to a carbonate rock since 
the method is suitable for any material, including those with sub-micron structures. The 
reconstructed 3D pore structures are tested by predicting permeability using the 
lattice-Boltzmann method. In addition permeabilities of the structures are predicted 
directly from 2D images using an extension of the effective medium approximation [15]. 
 
MULTIPLE-POINT STATISTICS METHOD 
Multiple-point statistics cannot be inferred from sparse data; their inference requires a 
densely and regularly sampled training image describing the geometries expected to exist 
in the real structure. For example, photographs of outcrops at the field scale and 
microscope images at the pore scale can be used as training images. The procedure 
mainly consists of two steps: (1) extracting multiple-point statistics from training images 
and (2) pattern reproduction [13, 14]. 
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The training image in Figure 1 is scanned using a template t composed of tn  locations 

αur  and a central location ur : 

tnhuu ,...,1=+= ααα

rrr      (1) 

where the αh
r

 are the vectors describing the template. For instance, in Figure 1(b), αh
r

 
are the 80 vectors of the square 9 × 9 template. The template is used to scan the training 
image and collect the pattern at each location ur . The pattern is defined by  

{ }tnhuiuiupattern ,...,1,)();()( =+= αα

rrr    (2) 

where ( )ui r  is the data value at the point within the template. Each point in the template 
has a number to identify the pattern and to store the pattern in memory. The set of all 
patterns scanned from the training image results in a training data set 

{ }tj NjupatternSet ,...,1),( ==     (3) 

where Set refers to the training data set constructed with the template t. Nt is the number 
of different central locations of template t over the training image.  
 

(a) Training image                 (b) Template 
Figure 1. (a) An example of a training image (a thin section of Berea sandstone with a 
porosity of 0.177, 1282 pixels). The pore space is shown white and the grain black. The 
resolution of the image is 10µm/pixel. (b) A 9 × 9 template to capture multiple-point 
statistics. The training image is scanned and each occurrence of any possible patterns of 
void space and solid is recorded. 
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The selection of the template is important and various template sizes nt should be tried in 
order to reproduce the structure. This can be examined by a visual inspection of 
reconstructed images and predicting the autocorrelation function. We use binary thin 
section images that have only void or solid. A detailed discussion of the training image 
can be found in the Rock Sample section.  
 
Multiple-point statistics are actually probabilities of occurrence of patterns. The 
probability of occurrence of any pattern npattern  associated with the data template t can 
be inferred from the training image by counting the number ( )npatternc  of replicates of 

npattern  found in the training image. A replicate should have the same geometry and the 
same data values as npattern . The multiple-point statistics can be identified to the 
proportion: 

( ) ( ) nnn Npatterncpattern ≈Pr     (4) 
where Nn is the size of the pattern. The key to this algorithm is the determination of the 
local conditional probability distribution functions (cpdf). We need to evaluate the 
probability that the unknown attribute value ( )ui r  takes any of 2 possible states – void or 
solid – given n nearest data during the reproduction at any unsampled location ur . If 
multiple-point statistics are available, then the conditioning of ( )ui r  to the single global 
pattern npattern  can be considered, and the conditional probability can be identified to 
the training proportion. The cpdf is inferred directly and consistently from the training 
image. The multiple-point statistics, the geometrical structures in other words, are 
borrowed directly from the training image. 
 
This approach can theoretically apply to a 3D field when 3D structural information is 
available. Since it is difficult or impossible to measure 3D sub-micron scale data, as 
mentioned above, our only alternative is to use 2D images to measure multiple-point 
statistics. In our case, in order to generate a 3D structure from 2D information, measured 
multiple-point statistics on one plane are rotated 90 degrees around each principal axis. In 
other words, measured statistics on the XY plane are transformed to the YZ and the XZ 
planes with an assumption of isotropy in orthogonal directions.   
 
In the presence of large-scale structures, the use of a single limited-size template would 
not suffice to model the large-scale characteristics observed in the training image. The 
template size can be theoretically expanded to match the largest structure in the training 
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image. However, the template size is constrained by memory limitations in the numerical 
simulation. An alternative approach can be introduced by a sort of multigrid simulation. 
Four different sized templates are used to scan the training image, resulting in four 
different data sets Set t1, Set t2, Set t3 and Set t4. Larger scale templates can simply be 
expanded from the small-scale template. In a multigrid system, a simulation is first 
performed on the coarsest grid. Once the coarse simulation is finished, the simulated 
values are assigned to the correct grid locations on the finer grid, and are used as 
conditioning data on the finer grid. When large-scale structures exist in the training 
image, this multigrid approach captures the large-scale multiple-point statistics 
effectively while requiring relatively little memory. 
 
To summarize multiple-point statistics reconstruction: a training image provides the 
characteristic pattern and cpdf within a designated template, then each point is 
reproduced using local surrounding points already reproduced and statistical information 
derived from a training image and a template. 
 

NUMERICAL METHODS 
The effective medium approximation (EMA) 
If the 3D microstructure is available, solving the Navier-Stokes equations by, for 
instance, the lattice-Boltzmann method can yield the permeability with reasonable 
accuracy at the expense of extensive data collection and computation. On the other hand, 
a quick estimation of permeability directly from a 2D image can be made by the effective 
medium approximation (EMA) [16]. First the pore size distribution is estimated from the 
2D image. The perimeter, P and area, A of each pore in a 2D image are estimated by the 
image analysis in order to approximate the hydraulic radius, Ci=A3/P2. We use the 
extended version of the EMA with the use of a hydraulic constriction and a stereological 
correction factor for area and perimeter, which are multiplied to the hydraulic radius in 
order to obtain a more realistic conductance [15, 17]. The stereological correction factor 
takes into account idealized cylindrical pores in 2D and 3D. EMA replaces each 
conductance Ci in a pore network with the effective value Ceff. The effective conductance 
can be found by solving the following equation. 

( ) 0
121

=
+−

−
∑
=

N

i ieff

ieff

CCz
CC       (5) 

where z is the coordination number that represents the number of throats connected to 
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each pore. Assuming a cubic network (z = 6), the permeability is calculated using  

total

eff

A
NC

k
47.1

=                (6) 

where N is the number of conductors in the designated direction and Atotal is total area. 
1.47 is the number density correction factor, which is derived for the number density of 
pore intersections made by an arbitrary slice in a cubic network. More details can be 
found in [15, 17]. 
 
The lattice-Boltzmann method (LBM) 
The lattice-Boltzmann method (LBM) provides a good approximation to solutions of the 
Navier-Stokes equations using a parallel and efficient algorithm that readily 
accommodates complex boundaries, as encountered in porous media [18]. We have 
developed a 3D two-phase LB model based on the 2D two-phase LB model proposed by 
Grunau et al. [19]. The model has been validated by precise comparisons with empirical 
equations, analytical solutions, and experiments [20]. We use this LBM as a single-phase 
flow simulator in this study. The model for the single phase can be described as 

( ) ( ) ( ) ( ) ( )[ ]t,xft,xf1t,xf1t,exf eq
iiiii −−=−++

τ
   (7) 

where ( )tfi ,x  is the particle distribution function at space x and time t along the i-th 
direction (i=0,1,2, …, 18 in our case) and ei is the local particle velocity. The right term is 
the BGK collision operator [21], which is widely used due to its simplicity and represents 
the relaxation process to local equilibrium ( )eq

if . τ  is the single time relaxation 
parameter. We use a three-dimensional nineteen velocity model, D3Q19, which includes 
a rest vector.  
 
The bounce-back scheme at walls is used to obtain no-slip velocity conditions. By the 
bounce-back scheme, when a particle distribution moves to a wall, the particle 
distribution scatters back to the node it came from. This simple boundary scheme allows 
the LBM to simulate fluid flows in complicated geometries. The flow field is computed 
using periodic boundary conditions. 
 
ROCK SAMPLE 
The carbonate rock sample used in our study consists of limestone and is classified as 
bioclastic packstone/grainstone. The core plug of this rock with 38 mm in diameter and 
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70 mm long has a porosity of 0.318 and a permeability of 6.7 md [22]. As described 
before, there is no 3D microstructure for this rock since the mean pore size is smaller 
than the resolution of micro-CT scanning. Part of 2D thin section image (512×512) 
shown in Figure 2 is used as training image in order to reconstruct 3D structures by our 
method. 

Figure 2. Binarized 2D thin section image of the carbonate rock (512×512 pixels, 
0.345µm/pixel) with a porosity of 0.331. The void space is white and the solid black. 
 
RESULTS 
Permeability estimation by EMA 
The permeability of the sample is estimated directly from the 2D image. The hydraulic 
constriction factor of 0.44 and the stereological correction factor of 3/8 is multiplied to 
the measured hydraulic radius [15]. Assuming a cubic network, the coordination number 
of six is used in our estimations. We know the assumption of cubic pore network might 
be over-simplified; however, EMA is useful to estimate permeability without massive 
computational requirements and to evaluate a 2D image in advance of 3D reconstruction. 
Estimations of permeabilities for the carbonate rock are in reasonably good agreement 
with experiment data as shown in Table 1, although the size of the samples is different.   
 

0.177mm
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Table 1. Computed permeabilities using the EMA and the LBM for the carbonates. In 
addition, results for Berea sandstone shown in Figure 1(a) are listed for comparison. 

 Experiment Computed permeability, md 3D reconstructed 

Sample No. Porosity Permeability, md By EMA By LBM Porosity 

Carbonate 0.318 6.7 6.05 19.8 0.318 

Berea 0.178 1100 1448 1274 0.178 

 
Template selection 
We use four different sized templates with the same 9×9 square shape, spanning 9×9, 
18×18, 27×27 and 36×36 pixels. A larger template can capture large structures; however, 
it takes much more CPU time and introduces more noise if the training image does not 
provide sufficient statistics. We decided to use a 9×9 template mainly in terms of CPU 
time after considering larger and smaller templates – this gave the optimum combination: 
less CPU time compared with a larger 11×11 template which doubles CPU time, less 
noise and preserving larger features than the use of a smaller 7×7 template. 
Advancements of CPU and a computer memory will allow us to use a larger template to 
capture large patterns. 
 
Unconditional 3D reconstruction by the multiple-point statistics method 
Figure 3 shows 2D cuts and 3D reconstructed image of the rock without conditioning 
data. There is unrealistic noise in the images due to insufficient statistics provided by 2D 
images. For example, if similar patterns in the training image cannot be found, the 
porosity value is simply used as a probability to reconstruct the voxel. This will lead to a 
noisy image. However, characteristic structures of the void space are reasonably 
preserved. General image processing of dilation and erosion operations is applied to 
reconstructed images to remove noise and smooth the boundary for the LBM simulation 
and a future network generation. Porosity is preserved in this operation. 
 
Permeability by LBM 
Since no microtomographic image of the carbonate rock is available, the LBM simulation 
is a convenient way to assess the reconstructed structures. The computed permeabilities 
of the reconstructed microstructures averaged over five realizations are listed in Table 1. 
Although the value for the carbonates is overestimated from the experimental 
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permeability, the estimation is good considering the significant size difference between 
reconstructed images and the experimental sample. Larger training images can capture 
more statistics and may produce more realistic images with similar permeability values to 
the experiment. In addition more information, such as several thin section images and 
multi-orientation thin section images may improve the results.  

  

Figure 3. A 2D cut (φ=0.296) through an unconditional reconstruction of carbonate rock 
and its subgrid of 3D image with φ=0.318. 
 
CONCLUSIONS AND FUTURE WORK 
A multiple-point statistics method using 2D thin sections to generate 3D pore-space 
representations of the carbonate rock has been tested in this paper. The microstructures of 
the carbonate rock were reconstructed and their permeabilities simulated by the 
lattice-Boltzmann method were compared with the experimental values. The predicted 
permeabilities were overestimated within a factor of three; however, the result is good 
considering the significant size difference between reconstructed images and the 
experimental sample. In this study, a combination of a small 2D image and a 9×9 
template with multigrid simulation was successful to capture typical patterns seen in the 
2D image. However, for more heterogeneous samples more information is needed. The 
reconstruction can be improved using additional information, such as higher-order 
information with large templates and several thin-section images including 
multi-orientation images if the medium is anisotropic, at the expense of more computer 
power and memory.     

0.034mm 

0.044mm 
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Future work will be devoted to application of the method to more carbonates, as well as 
the generation of topologically equivalent networks from 3D images. From the networks, 
predictions of capillary pressure and relative permeabilities for samples of arbitrary 
wettability can be made using pore-scale modeling [1]. 
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