
SCA2004-37 1/11
 

  

ESTIMATING THE PERMEABILITY OF  
CARBONATE ROCKS USING IMAGE ANALYSIS  

AND EFFECTIVE MEDIUM THEORY  
 

M. Jurgawczynski1, R. W. Zimmerman1, and X. D. Jing2 
1Dept. of Earth Science and Engineering, Imperial College, London, SW7 2AZ, U.K. 
2Shell International Exploration and Production, 2280 AB Rijswijk, The Netherlands  

 
This paper was prepared for presentation at the International Symposium of the  

Society of Core Analysts held in Abu Dhabi, UAE, 5-9 October, 2004 
 
ABSTRACT 
A methodology was recently developed at Imperial College to estimate the permeability 
of sedimentary rocks from two-dimensional pore images [1]. The only data required from 
the images are the areas and perimeters of the individual pores. From this information, 
the hydraulic conductivities of the individual pores are estimated. The overall 
permeability of the rock is then estimated using effective medium theory. In contrast to 
methods that require reconstruction of the 3-dimensional pore structure and the solution 
of network flow equations, our approach requires minimal calculation. The procedure 
was tested on scanning-electron micrograph (SEM) images of more than twenty North 
Sea reservoir cores, and the permeability was generally predicted within a factor of two. 
 
This methodology is currently being applied to carbonate rocks, which generally have 
more complex and heterogeneous pore structures. Despite this difference, preliminary 
work on several carbonates rocks have given encouraging results, with the predictions 
again typically being within factor of two of the measured permeabilities, for rocks that 
do not contain large vugs that are unconnected to the main pore network. Nevertheless, 
we are currently investigating the extent to which the methodology will need to be 
modified for carbonates. For example, in sandstones it was found to suffice to assume 
that the pore network has a co-ordination number of six. This may need to be modified 
for different types of carbonates. In addition, a method needs to be developed to be able 
to identify isolated vugs, and remove them from the permeability calculation. 
 
Aside from giving insight into the influence of pore structure on permeability, the method 
has potential applications for making permeability predictions using drill cuttings, in 
situations where it is not possible to recover intact core. Another possible application is to 
use downhole borehole imaging technology to provide an image with the appropriate 
resolution, thereby allowing permeability estimation without the need for core samples. 
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INTRODUCTION  
The ability to estimate the permeability of a reservoir rock from other more readily 
measurable parameters would be of great value to the oil industry. Empirical permeability 
models such as the Kozeny-Carman equation [2] make use of the porosity and a specific 
surface parameter. Although simple to implement, the Kozeny-Carman equation is often 
found to be insufficiently accurate for reservoir characterization purposes. The Katz-
Thomson equation [3] can yield accurate estimations of the permeability, using the 
porosity and the electrical formation factor. However, the requirement of having a 
measured value of the electrical formation factor is clearly a disadvantage of this method.  
 
At the other extreme of complexity lie those models that attempt to reconstruct the pore 
space of a rock, and then numerically solve the Navier-Stokes equations in the pore 
space. Adler et al. [4] reconstructed the pore space of Fontainebleau sandstones from thin 
sections and then solved the Navier-Stokes equations using a finite-difference scheme to 
yield the permeability. Spanne et al. [5], and later Ferréol and Rothman [6], used X-ray 
microtomography to reconstruct the pore structure of a Fontainebleau sandstone, from 
which the permeability was calculated numerically, in the latter case using the lattice-
Boltzmann method. Such approaches are capable of good accuracy, but at the expense of 
extensive data collection and computation. 
 
We have been developing a method for predicting permeability from two-dimensional 
images of the pore space, without requiring any computationally intensive procedures. 
The hydraulic conductivities of the individual pores are estimated from their areas and 
perimeters using the hydraulic radius approximation. Stereological correction factors are 
applied to determine the true cross-sectional shapes from the images, and to determine 
the true number density of pores per unit area. A constriction factor accounts for the 
variation of the cross-sectional area along the tube length. The pores are assumed to be 
arranged in a cubic lattice, after which the effective-medium theory of Kirkpatrick [7] is 
used to estimate the effective conductance of the pores. Finally, the permeability is 
estimated from the effective pore conductance and the number density of pores. 
 
This methodology has previously been applied [1] to several reservoir sandstones from 
the North Sea, and a few outcrop sandstones, having permeabilities in the range of 20-
1400 mD. The permeability estimates were almost always within a factor of two of the 
values measured in the laboratory, with an average error, in absolute value, of less than 
50%. In the present paper we briefly review the procedure as developed for sandstones, 
and then describe its application to some carbonate rocks. Finally, we discuss possible 
refinements to the procedure that may be necessary for carbonates. 
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CONDUCTANCE OF INDIVIDUAL PORES 
Effect of pore shape  
Consider an individual pore of length L, with a pressure drop ∆P along its length. The 
volumetric flowrate Q through this pore can be written as ,/ LPGQ µ∆=  where µ is the 
fluid viscosity and G is the “hydraulic conductance”. First, imagine that we can idealize 
an individual pore as a prismatic tube having a uniform, although possibly irregular, 
cross-section. If the cross section were circular, with radius r, the “hydraulic 
conductance” would be given by   G = πr 4 /8, according to Poiseuille’s law. Written in 
terms of the area Α and perimeter Γ of the pore, this result is   G = A3 / 2Γ 2. According to 
the hydraulic radius approximation, this result can be used for non-circular cross sections. 
By comparison with boundary element solutions to the flow equations in a pores taken 
from images of Massilon and Berea sandstones, Sisavath et al. [8] found that this 
approximation is, on average, accurate to better than 20%. 
 
Effect of converging-diverging cross-section 
The hydraulic-radius approximation is intended to apply to a cylindrical pore with 
uniform cross-section. However, the cross-section of rock pore typically varies along the 
length of the pore. By integrating the Poiseuille equation along the length of a pore, it can 
be shown that     G = π < r−4 >−1 /8, where < ⋅ > denotes an average taken over the length of 
the tube. If we estimate the radius of such a tube based on a single thin section of rock, 
however, we would be estimating the mean value of the radius,  < r > , and would predict 
that     G = π < r >4/8. Hence, the actual conductance will be less than that estimated from 
the mean radius by a factor of 

    
f ≡ G(actual)

G( predicted)
=
< r−4 >−1

< r >4
≤1,    (1) 

where f can be referred to as the hydraulic constriction factor.   
 
For a pore whose radius varies as a sinusoidal function of the position along the pore, the 
constriction factor can be calculated to be [1] 

,
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++++
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ρρρρ
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where     ρ = rmin / rmax . The constriction factors calculated for sawtooth or step-function 
variations of radius are quite similar to (2), except for values of ρ less than about 0.20, 
which is probably an unrealistically small value.  
 
Lock et al. [1] did not investigate the problem of estimating maxmin / rr  from two-
dimensional images. Instead, based on various pieces of evidence gleaned from the 
literature, they adopted a value of 0.43 for sandstones, in which case equation (2) gives a 
hydraulic constriction factor of 0.44. 
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Stereological correction for area and perimeter 
The areas and perimeters of the individual pores, as measured from any 2D image, will in 
general be larger than the actual values for the pore cross-sections. For example, consider 
a cylindrical pore of radius r. In general, the plane of the image will intersect this pore at 
some arbitrary angle θ relative to the pore axis, and so the pore will appear as an ellipse 
with a semi-minor axis of r, but a semi-major axis of r/cosθ.  Hence, the area and 
perimeter of the image would consequently be larger than the actual area and perimeter of 
the pore, and so the estimated hydraulic conductance will be greater than the actual value. 
An approximate stereological correction factor that converts the “measured” values of the 
hydraulic conductance into “actual” values can be found by averaging the overestimation 
in the conductance G over all possible angles, assuming that the pores are randomly 
oriented with respect to the plane of the image. The result [1] of this calculation is that 
the pore conductances estimated from the image must be multiplied by 0.375 to arrive at 
the “true” conductance of the pore. 
 
Stereological correction for number density  
Consideration must also be made of the overestimation in the areal number density of 
pores that occurs as a consequence of taking an arbitrary two-dimensional slice that 
probably does not lie in a plane perpendicular to a lattice direction. If we again consider 
the idealization of pore microstructure by a hypothetical cubic lattice, then a slice taken 
perpendicular to a given lattice direction will only intersect those pores that lie along that 
direction. If, however, the slicing plane is not normal to the lattice direction, it will also 
intersect some pores that are orthogonal to that first lattice direction. Evaluation of this 
effect [1] leads to the conclusion that the apparent number density of pores (i.e., pores per 
unit area of image) must be divided by 1.47 to yield the actual density of pores that are 
oriented in a given lattice direction.  An analogous calculation for a rock containing pores 
having a random distribution of orientations gives an identical result. 
 
NETWORK MODELS 
Network models have been used to study the transport properties of porous media since 
the pioneering work of Fatt [9] in the 1950s. Early studies used idealized pore shapes and 
hypothetical pore-size distributions to gain insight into the physics of pore-scale flow 
processes, and to study the influence of parameters such as co-ordination number and 
porosity. More recently, there has been a trend towards the use of rock-specific pore 
geometry data, as obtained from methods such as NMR imaging [10] or mercury 
intrusion porosimetry [11], in attempts to predict the transport properties of a given rock 
sample. A critical review of recent work on pore network models, with an emphasis on 
multi-phase flow, has been given by Blunt [12]. 
 
We assume that the pore space can be represented by a network of pore tubes, connected 
to each other at (volumeless) nodes. If the values of all of the conductances were known 
exactly, and the topology of the network was also known, evaluation of the overall 
macroscopic conductance of the network would require the solution of the large system 
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of linear equations that arises by applying the equation   Q =G∆P /µL  to each tube, and 
invoking the fact that the sum of the fluxes into each node must be zero in order to 
conserve mass. An alternative to an “exact” network calculation is the effective medium 
approximation (EMA) of Kirkpatrick [7], in which each conductor  Gi  in the network is 
replaced by a conductor having some effective value  Geff , which is found by solving the  
following implicit equation for   Geff : 

    

Geff −Gi

(z / 2−1)Geff +Gi
= 0

i=1

N
∑ ,            (3) 

where the co-ordination number z represents the number of conductors that meet at each 
node, and the summation is taken over each individual conductor in the network. In our 
work we set z = 6, which corresponds to a cubic lattice. Other researchers [13-17] have 
estimated the mean co-ordination number for sandstones to be in the range of 3-8.   
 
A discussion of the accuracy of the effective medium approximation has been given by 
Koplik [13] and David et al. [14], for various idealized distributions.  Lock et al. [18] 
compared the EMA predictions with exact solutions of the network equations, and found 
errors of less than 2-3%. 
 
The last step involves computing the permeability of the continuous medium from the 
effective conductance of the individual conductors. Imagine a plane that slices the lattice 
perpendicular to one of the lattice directions, containing N pores in a region of total area 
A. The total flowrate through this region is given by   Q = NGeff ∆P /µL . Equating this to 
the flux as given by Darcy’s law, LPkAQ µ/∆= , then yields 

  k = NGeff / A .      (4) 

 
IMAGE ANALYSIS OF PORE STRUCTURE 
We start with two-dimensional cross-sectional images of the rock. Regardless of their 
origin, the images must be converted into digitized grey-scale images in which the pore 
space is generally distinguished from the various minerals by having higher grey-scale 
values. The images are then thresholded to yield binary images in which the pores are 
black and the mineral grains are white. We have performed this analysis using the “Scion 
Image for Windows” image analysis package, Version Image Beta1a, 1997. Details of the 
image analysis procedure can be found in [1]. 
 
We have found that this thresholding procedure leads to the identification of a large 
number of very small “pores” that are probably either unconnected to the conducting pore 
space, or which are merely artifacts of the digitization process. We remove these features 
by applying a cutoff that deletes those features whose areas are < 1% of the area of the 
largest pore in the image.  
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The issue of pixel size is of importance in this type of analysis. Use of a pixel size that is 
too large, relative to the pore sizes, will lead to the loss of fine-scale pore features, and 
consequent inaccuracy in the estimation of the hydraulic conductances. On the other 
hand, use of a pixel size that is “too small” will capture small-scale pore roughness 
features that do not influence the hydraulic transmissivity, and so will lead to a perimeter 
term in the hydraulic conductance equation that is too large, thereby underestimating the 
conductance. Berryman and Blair [2] proposed that the pixel size be approximately 1% of 
the average pore diameter. Sisavath et al. [8], concluded that the ratio of pixel/pore size 
could be as large at 10% before any accuracy is lost.  
 
Sensitivity to magnification has been studied in [2] and [8]. If the magnification is too 
low, important details of the pore structure are lost, whereas if it is too high, the image 
captures small-scale pore roughness that actually has no influence on the flow. A related 
issue is the total area of view that is required to yield a sufficiently large sample of pores. 
For sandstones, we have found that images as small as 5-6 pores in each direction may be 
sufficient to allow us to predict core-scale permeabilities. But some carbonates are quite 
heterogeneous, and the so-called “representative elementary volume” may be much larger 
than our millimetre-scale images. These are difficult and long-standing issues that we are 
continuing to investigate. 
 
ANALYSIS OF CARBONATE SAMPLES  
We have taken the methodology developed in [1] for sandstones, and applied it to a set of 
carbonate rocks having permeabilities in the range of 0.5 to 25 mD. In each case we start 
with a back-scattered electron (BSE) micrograph image of the rock. In this early stage of 
our investigations, we have decided to test the method “as is”, without making any 
modifications to account for any fundamental differences between sandstones and 
carbonates, as regards to pore structure. Specifically, we have been using the same 
constriction factor (which in principle depends on the ratio of minimum to maximum 
pore radius for a given pore), and have again assumed a mean co-ordination number of 6.   
 
Sample A (Fig. 1) 
This is a poorly-sorted peloidal grainstone. Porosity is shown here in black as usual, 
microporosity is shown in grey grades. Macroporosity is rare within this sample, which is 
instead characterized by diffuse microporosity. When looking at the sample at higher 
resolutions (×2000), we find that, in some areas, most of the original primary intraparticle 
porosity has been cemented by calcite. 
 
The area of view of this is 337×193 µm2, with a total of 600×343 pixels. After analysing 
the sample with Scion Image, we find 1403 “pore” features, most of which are eventually 
discarded as part of the areal thresholding process. Therefore, the number of pores 
effectively used to find the overall conductance is 426. The permeability predicted by our 
approach, 2.7 mD, is within 8% of the measured value of 2.5 mD. 
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Sample D (Fig. 2) 
This is clearly a carbonate with separate vuggy pores and macroporosity. Some of the 
pores are up to 0.8 mm in diameter; these are probably moldic pores. We can also notice 
the scale of the sample, which is much larger than other samples presented here. 
However, there also is microporosity, which gives us a very heterogeneous sample. 
 
The area of view of this is 5010×2965 µm2, for a pixel resolution of 700×414 pixels. The 
number of “pores” initially identified in the image analysis procedure is 1028 pores, 
whereas only 86 survive the thresholding procedure. The predicted permeability of 3002 
mD is two orders of magnitude larger than the measured value of 25 mD.  
 
Sample E (Fig. 3) 
This sample is a back scattered image of a very poorly-sorted peloidal grainstone. One 
can immediately appreciate the heterogeneity of the pore system, which is ranging from 
interparticle micro-pores to intraparticle macro-pores. When looking at the sample at 
higher resolution (×2000), we notice tight calcite crystals arrangement that cause the 
micro-pore system to be fairly isolated in certain parts of the sample. Also, there are signs 
of possible re-crystallization processes. 
 
The area of view of this image is 1873×1070 µm2, for a pixel resolution of 700×414 
pixels. The initial number of pore-like features identified with Scion Image is 822, of 
which 162 survive the areal thresholding process. In this case the estimated permeability 
of 12.5 mD is very close to the measured value of 13 mD. 
 
Sample F (Fig. 4) 
This sample is a poorly-sorted peloidal-bioclastic grainstone. The image shown below 
illustrates a high magnification view on an area dominated by peloidal material (porous 
areas). Structured grains are probably a diagenetic product. When looking at higher 
resolution (×2000), we can see that peloids have been leached away but intergranular 
cements are preserved - large calcite crystals with straight edges. Pores are mostly present 
in the leached peloids, whereas very little porosity is seen within the cements.  
 
The area of view of this is 187×107 µm2, for a pixel resolution of 700×400 pixels. Scion 
Image identifies 1904 “pores”, of which 617 remain after areal thresholding. The 
predicted permeability, 3.7 mD, is within a factor of 2 of the measured value of 1.9 mD.  
 
Discussion of Results 
The results for the four samples are summarized in Table 1. The porosity values listed are 
those calculated from the images, not those measured in the laboratory. In three cases (A, 
E and F) the method works just as well as it did for sandstones in [1]. The permeability is, 
in these three cases, predicted within about a factor of two. 
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Table 1: Results for some carbonate samples. 

Sample Porosity No. of Pores kpred (mD) kmeas (mD) 
A 4.3% 426 2.7 2.5 
D 13.7% 86 3002 25.0 
E 4.3% 162 12.5 13.0 
F 14.7% 617 3.7 1.9 

 
In the case of sample, D, the permeability is overpredicted by about two orders of 
magnitude. Unsurprisingly, it is one the sample that presents the most heterogeneity, 
namely a combination of macroporosity (vuggy pores up to 0.8 mm) as well as 
microporosity. This heterogeneity can be quantified by examining the ratio of the largest 
to smallest pore (by area) identified in the image analysis process. This ratio is about 
2000 for sample D, 125 for sample A, 200 for sample E, and 60 for sample F. However, it 
is clear that an objective method is needed to identify non-connected vugs, so that they 
can be excluded, with some justification, from the calculation of the effective pore 
conductivity. We are investigating the use of statistical methods to identify those pores 
that are clearly not part of the same population as the main pore network. 
 
Based on our analysis of a relatively small number of samples, including a few not 
described in this paper, it seems that the method either works quite well, or not very well 
at all. The fact that the method often makes predictions that are probably within the error 
bars of the laboratory permeability measurements would seem to argue that the method 
developed in [1] to determine the permeability from the geometry of the individual pores 
that are part of the conducting network, does not require any fine-tuning. What does seem 
to be needed is a method for identifying a priori those pores that do not form part of the 
interconnected pore network. If the samples are impregnated with epoxy before 
sectioning and imaging, the non-connected pores could be identified by the lack of 
epoxy. As mentioned above, we are also investigating statistical methods to identify these 
pores that are “outliers” of the main population. 
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Figure 1: BSE image of carbonate sample A. 

 

Figure 2: BSE image of carbonate sample D. 
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Figure 3: BSE image of carbonate sample E. 

 

Figure 4: BSE image of carbonate sample F. 

 




