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ABSTRACT 
Correlations for petrophysical parameters and saturation dependent transport properties 
are usually grouped by “rock type”. This is a broad classification including quantitative 
measures such as porosity, permeability, pore and throat size distributions, pore 
connectivity and qualitative descriptions of rock fabric and texture. Rock typing is based 
on conventional core analysis data (porosimetry, permeametry, mercury injection 
capillary pressure (MICP)), special core analysis (SCAL), wireline logs (electrofacies), 
description of cuttings and depositional environment, and thin-section analysis. The 
broad nature of this classification has obvious limitations and fails to fully capture the 
complex dependence between pore space geometry and topology (rock micro-structure) 
and petrophysical properties.  

We propose an alternate classification for rocks based on high resolution X-ray computed 
microtomography which is complementary to the conventional approach and allows the 
establishment of a more direct relationship between rock micro-structure and 
petrophysical properties. Petrophysical properties are computed directly from 3D 
microtomographic images of clastic and carbonate cores drawn from a wide range of 
reservoirs. The computed petrophysical properties are used to test empirical correlations 
between permeability and other important petrophysical parameters (e.g., hydraulic 
radius, drainage capillary pressure, NMR response, grain size and sorting) for various 
rock types. We find that the most universally robust correlations are based on the critical 
pore radius determined from drainage capillary pressure data. The results clearly 
demonstrate the potential for digital imaging and computations on 3D images to develop 
improved correlations for petrophysical properties. 

INTRODUCTION 
A long standing and crucial problem in the study of flow in porous media is to relate the 
permeability k of a material saturated with a single fluid to other petrophysical properties. 
Numerous correlations for permeability to a wide range of petrophysical properties (e.g., 
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porosity, drainage capillary pressure, NMR response, grain fabric and texture, rock type 
and depositional environment) have been proposed. Testing of these correlations has been 
limited to a periodic array of spheres [1], model random sphere packs [2,3] and stochastic 
reconstructions of porous materials [4]. In this paper we test these correlations directly on 
rock microstructures generated from 3D micro-CT images. 
In previous work we have described 3D micro-CT [5,6] imaging studies of a number of 
core plugs (2mm to 1cm in diameter) from a range of reservoirs. The cores included 
homogeneous sandstones, unconsolidated sands, consolidated reservoir sands, limestones 
and carbonates. The samples exhibit a broad range of pore and grain sizes, porosity, 
permeability, tortuosity and mineralogy. After phase separation [7], computational results 
can be obtained directly from the digitized tomographic images for a range of 
geometrical and topological parameters as well as petrophysical properties; these include 
pore size [8,9], hydraulic radii, pore and throat sizes [10], NMR relaxation spectra [11] 
grain size, fabric and texture [12], formation factor [13], permeability [14], drainage 
capillary pressure [15] and relative permeability. In previous work we have shown that 
the comparison of laboratory-derived grain size analysis, permeability and drainage 
capillary pressure are in good agreement with experiment across a range of rock types 
[13,8,16,9,12]. Moreover, we have shown that representative data can be obtained at 
scales of ≅ (1-3 mm)3, depending on the heterogeneity of the sample. Upscaled 
petrophysical properties obtained at the full image scale also gave good agreement. The 
small sample sizes  required for analysis makes it possible for a single sample to produce 
as many as 20-200 independent measurements. In this paper we report the computed 
morphological and petrophysical properties on 36 imaged cores leading to more than 
4000 independent data sets across a range of rock types. This enables us to extensively 
test common empirical correlations between permeability and other 
geometrical/petrophysical parameters.  

METHODOLOGY 
A high-resolution and large-field X-ray µCT facility has been used [17,5,6] to image all 
the samples; most images are acquired at 20483 voxels. The resolution chosen is 
dependent on the pore size of the material. For most sandstones studied we observe 
grains of 100-300 µm and 4-10 µm resolution is sufficient [8,16]. The limestone sample 
is imaged at 5 µm resolution over a 1cm field of view. The sample with the smallest 
pores, the carbonate sample [9], is imaged at 1.3 µm resolution over a 2.5 mm field of 
view. In this paper we consider data obtained on 36 samples, which we classify across 
five broad categories of rock type. Fig. 1 shows examples of images of each rock type: 

1. Homogeneous sands: Four samples of Fontainebleau sandstone [18], and one 
sample of Berea sand. 

2. Unconsolidated sands: Two clean soil samples, two silty soil samples and four 
poorly consolidated reservoir cores from a single reservoir are considered.  

3. Consolidated (reservoir) sands: 23 reservoir sandstone cores from seven different 
reservoirs are considered. Two cores exhibiting significant bedding anisotropy are 
included in the data.  
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4. Limestone: A very high porosity/permeability quarried limestone core was 
considered. 

5. Carbonate: A vuggy reservoir carbonate core plug of Middle East origin, 
exhibiting a broad range of pore sizes, was considered. 

Permeability Correlations 
Here we describe a number of pore and grain size parameters used in the estimation of 
fluid permeability.  

Kozeny-Carman Relation: Hydraulic Radius Theory 
One of the most basic techniques for estimating permeability uses the Kozeny-Carman 
formula, 

 
 (1)

 
where Vp and S denote the volume and surface area of the pore space respectively, and 
the ratio Vp/S provides a pore length scale. τ defines the tortuosity of the flow channels, 
and is related to the Formation factor F=τ/φ.  

Critical Pore Diameter 
Katz and Thompson [19] argued that the effective permeability of a rock is controlled by 
lc, a critical pore diameter corresponding to the diameter of the smallest pore of the set of 
largest pores that percolate through the rock 

  
(2)

 
where ckt is a constant that depends on the distribution of pore sizes. The value of ckt 
derived in [19] was ckt ≅ 1/226. More recent work suggests that the correct value should 
be larger by a factor of 2-11 [20,21,22]. For example, when considering a system with a 
narrow distribution of pore sizes one obtains the classical Washburn result ckt =1/32, 
while for periodic bicontinuous systems of simple cubic symmetry one observes [22] ckt ≅ 
1/20. A feature of this method is that lc can be directly measured from mercury intrusion 
experiments.  

NMR Permeability Correlations 
The connection between NMR relaxation measurements and permeability stems from the 
strong effect that the rock surface has on promoting magnetic relaxation. Permeability 
correlations are usually based on the logarithmic mean T2lm of the relaxation time which 
is assumed to be related to an average Vp/S or pore size. Commonly used NMR 
response/permeability correlations include those of the form [20,23], 

   
(3)

 
and  

   
(4) 
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Permeability from Grain Size Information 
In most cases relationships between grain size statistics and permeability are based on 
empirical data. Krumbein and Monk [24] measured permeability in sand packs of about 
40% porosity for specified size and sorting ranges, which led to 

   
(5)

 
where Dg is the geometric mean diameter in millimetres and σD is the standard deviation 
of the grain diameter in phi units where phi = -log2[D(mm)]. Although porosity is not 
included, Beard and Weyl [25] state this correlation to be accurate for porosities of 23%-
43%. Berg [26] considered pores within sphere packs and derived expressions for k in 
various packings. The following correlation resulted; 

   
(6)

 
where D is the median grain diameter and p is a sorting term; the 90th percentile value of 
phi minus the 10th percentile value. Panda and Lake [27] applied the hydraulic radius 
theory (Kozeny-Carman) augmented by statistics of the particle size distribution for 
unconsolidated porous media: 

   
(7)

 
where Dp is the mean particle size, CDp = σDp is the coefficient of variation of the grain 
size distribution, and γ is the skewness of the distribution. 

Numerical Computation of Morphology and Petrophysical Properties 
The numerical methods used to calculate pore morphology [15,8,10], grain fabric and 
texture [12] and various petrophysical properties [13,14,11] directly on the 3D digital 
images have been published elsewhere. An illustration of the results of a number of the 
measurements performed directly on the 3D images are given in Fig. 2(a-c). Examples of 
the calculations performed directly on imaged samples and the match to experimental 
data are summarised in Fig. 2(d-f). In Table 1 we summarize the range of core samples 
studied and give the porosity and permeability derived from the imaged cores.  In Table 2 
we describe the grain size data for three clean unconsolidated cores, one poorly sorted 
reservoir core and two poorly consolidated silty sands. 

RESULTS 

Correlations to Pore Size Parameters 
From the data for permeability we can determine the best fit values of the prefactors ckt, 
cH, a1 and a2 from Eqns. 1-4. We determine the prefactors for each of the five rock types 
and for all rocks combined. The values are summarized in Table 3. The best fits for all 
rock types combined are summarized in Fig. 3 and 4. To compare the quality of the fits 
we use a linear regression equation to fit the data points and report the mean residual 
error: 
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. (8)

 
Table 3 gives the quality of the fits to the permeability for all 4 empirical equations. 

From the data we observe that the most appropriate length scale for the prediction of the 
permeability across all samples is lc. The prefactor ckt (see Table 3) varies only slightly 
across all samples (from .030 for limestone to .041 for homogeneous sands). Use of a 
universal value of ckt for all rock types leads to excellent correlations. This is most 
probably a reflection of the fact that permeability is determined by the size of pore throats 
and lc is associated with the percolation threshold of a non-wetting phase penetrating the 
pore space during a drainage process; this is dependent on critical throat radii. Eqn. 2 also 
has an advantage in that anisotropy in permeability is captured by the correlation. For 
most cores imaged we observe some anisotropy in the permeability, but we have 
observed in extreme cases (e.g., thinly bedded sands) [28] variations in permeabilities of 
more than an order of magnitude. From the digital images one can measure lc in the three 
orthogonal directions—the variations in lc correlate with the permeability data. The value 
of ckt is very similar to that derived for a simple bundle of capillary tubes and from 
critical path analysis of pore networks of low coordination [29] and is nearly one order of 
magnitude larger than the prediction of [19].  

The quality of the fit of all correlations is however quite good. While the Kozeny-Carman 
equation seems to show a consistently small mismatch to data in the lower ranges of 
permeability (see Figure 3), for all rock types the prefactor cH remains relatively 
consistent. The variation in the prefactor a1 in Eqn. 3 is quite large over the different rock 
types, but the prefactor a2 in Eqn. 4 is rather robust. The fit is noticeably poorer than that 
based on lc, but the results are satisfactory given the variation in the rock type and 
permeabilities observed. This fact that the Kozeny-Carman equation and the NMR 
correlation also give good fits to the data suggests that throat sizes are strongly correlated 
to pore sizes in these rocks. While this is known for sands, it is perhaps a surprising result 
for carbonates. The study on carbonates will need to be extended to a significant number 
of cores to further test this result. The similar match of Eqns. 1 and 4 indicates that Vp/S 
correlates strongly to T2lm in all systems studied. The results also indicate that the most 
appropriate tortuosity parameter is the formation factor.  Comparing predictions of Eqn. 3 
to Eqn. 4, we see that Eqn. 4 consistently gives a better match to data and has a more 
robust prefactor. While this is true for the digital predictions shown here it will be 
interesting to test whether this holds for lab-based experimental data. In the current study 
we measure F numerically (no contribution from clays and other forms of microporosity 
are included in the calculation). In experimental studies the effect of contributions to F 
from these microporous regions could lead to poorer correlation.  

Correlations to Grain Size Parameters 
In Table 4 we compare the permeability estimates from Eqns. 5-7 to computed data on 
the cores listed in Table 2.  The predictions for the three clean samples (Soils 1/2 and 
Unconsolidated Soil 3) agree to within a factor of 2-3. They give a slightly poorer 
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correlation for the poorly sorted sand. Of the three empirical equations, Eqn. 7 seems to 
give the best agreement. Matches to the predictions for the silty soils are poorer and tend 
to overestimate the actual permeability. This is consistent with the work of [27] who 
found that the correlations based on grain size distribution generally overestimate real 
permeabilities for k ≤ 1 Darcy. 

CONCLUSIONS 
1. We describe the calculation of pore morphology, grain fabric and texture and various 

petrophysical properties directly on the 3D digital images of a range of rock types. 
Over 4000 independent samples are considered. We use the computed petrophysical 
properties to test empirical correlations between permeability and other petrophysical 
parameters (e.g., hydraulic radius, drainage capillary pressure, NMR response, grain 
size and sorting) for various rock types. 

2. The most accurate empirical prediction of the permeability is Eqn. 2. This is a 
reflection of the fact that permeability is mainly determined by the size of pore throats 
and lc is dependent on critical throat radii. All correlations perform reasonably well.  
This suggests that throat sizes are strongly correlated to pore sizes in the samples 
considered.  

3. The most appropriate tortuosity parameter is the formation factor. The predictions of 
Eqn. 4 are superior to Eqn. 3. It is noted that in the current study we measure F 
numerically (no contribution from clays, microporosity are included in the 
calculation). Realistically the effect of contributions to F from regions of the pore 
space that do not contribute to permeability could lead to poorer predictions.  

4. Correlations between permeability and grain size information are tested on a small 
number of unconsolidated cores. Eqn. 7 gives the best agreement. Matches to the 
predictions for the silty soils are poorer, but as noted by [27], the permeability 
correlations based on grain size data generally fail for permeabilities less than 1 
Darcy. 

5. The results clearly demonstrate the potential for digital imaging and computations on 
3D images to develop improved correlations for a range of petrophysical properties. 
Further work is required to extend the study to a wider range of carbonate samples. 
Extension to studies of correlations for relative permeability and elastic properties are 
also underway.  
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Table 1: Samples used in this study. Abbreviations are HS = Homogeneous Sands, US = 
Unconsolidated Sands, LS = Limestone, C = Carbonate, CS = Consolidated Sands. 
 Sample φ [%] k [mD]  Sample φ [%] k [mD] 

Fontainebleau 8.3 278 Res1:45 14.3 148 
Fontainebleau 12.9 373 Res1:48 12.5 9.0 
Fontainebleau 17.6 2071 Res1:57 12.5 20.5 
Fontainebleau 21.0 2552 Res1:152 18.5 1425 

HS 

Berea 28.6 6783 Res1:239 16.5 1625 
Soil 1 41.9 253000 Res1:276 23.1 248 
Soil 2 37.7 70500 Res2:18 10.5 137 
Uncon2 28.9 2100 Res2:32 8.2 9.0 
Uncon3 29.2 6450 Res2:33 12.2 20.5 
Uncon4 31.4 6250 Res2:34 9.4 77 
Uncon5 25.2 3500 Res3:2 24.3 10353 
Silty Soil 1 8.0 130 Res3:6 26.5 875 

US 

Silty Soil 2 9.0 109 Res3:9 9.7 5.45 
LS Outcrop 50.5 20800 Res4:A 12.4 5230 
C Vuggy 15.6 4.1 

CS 

Res4:C 9.5 242 
Res Sand 8.9 88  Res4:D 5.6 58.3 CS 
Laminated 11.57 150  Poor Sorted 7.2 43.7 

Table 2: Grain size information for the two clean soil samples (Soil 1 and 2), one clean 
unconsolidated reservoir core and one clean poorly sorted reservoir sand. Silty Soil 1 and 
2 were sister plugs that had significant fractions of silt; the grain size parameters were 
analysed by laser particle sizing for the silt/clay range of grain sizes (σphi in phi units). 

Sample Dg [mm] <Dp> [mm] D [mm] σD [mm] γ [mm] CDp [mm] σphi 
Soil 1 .50 .51 .49 .14 .11 .27 .35 
Soil 2 .32 .25 .25 .12 -.022 .34 .52 
Uncon3 .15 .16 .16 .046 .44 .28 .42 
Poor Sorted .17 .20 .16 .14 .35 .70 1.04
Silty Soil 1/2 .24 .40 .45 .29 -.10 .73 3.18

Table 3: Prefactors and residual errors for the permeability correlations Eqns. 1-4 across 
the five rock types based on the best fit to the data. 

Sample ckt cH a1 a2 S2(lc) S2(H) S2(a1) S2(a2)
Carbonates .033 .048 .028 .0033 .067 .26 .35 .27 
Limestone .030 .063 .016 .0066 .021 .035 .066 .029 
Homogeneous Sandstones .041 .038 .165 .0075 .008 .014 .062 .076 
Consolidated .037 .040 .118 .0032 .072 .092 .18 .12 
Unconsolidated .039 .034 .091 .0042 .041 .077 .048 .069 
All .035 .042 .121 .0046 .054 .089 .156 .127 
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Table 4: Comparison of the permeability predictions using grain size parameters to the 
simulated permeabilities.  

Prediction [Darcy] Simulation [Darcy] Sample 
Eqn 5 Eqn 6 Eqn 7 Permeability 

Soil 1 120.1 134.6 125.4 253 
Soil 2 39.4 34.6 49.3 70.5 
Unconsolidated3 9.9 4.9 7.3 6.1 
Poor Sorted 5.6 0.32 9.6 3.0 
Silty Soil 1 0.68 0.044 0.37 0.11 
Silty Soil 2 0.68 1.65 0.88 0.032 

 
 

[a]  [b]  [c]  

[d]  [e]  [f]  
 

Figure 1: Slices of representative samples imaged for each rock type. (a) Homogeneous 
sand, (b) unconsolidated sand, (c) reservoir sand, (d) poorly sorted reservoir sand, (e) 
limestone and (f) reservoir carbonate. 
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[a]  [b]  

[c]  [d]  

[e]  [f]  

Figure 2: (a) A skeleton of a 3003 subset of an image. (b) Grain pack after grain 
separation with colours labelling the distinct grains [12]. (c) A 2D slice of a reservoir 
core during drainage at an intermediate saturation. Grains are black and white is the 
phase distribution of the non-wetting phase within the pores. (d) Prediction for the k:φ 
relationship from 4 small (5 mm) plugs from a single well of a gas reservoir and 
comparison to laboratory data obtained on 60 core samples ([8]). (e) Equivalent pore 
radius from digital analysis on a plug and MICP data on the same and a sister plug 
(unpublished data). (f) Comparison of grain size distributions for an unconsolidated sand 
obtained digitally to one obtained by laser particle sizing on a sister plug [12]. 
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Figure 3: Comparison of the simulated permeability to the Katz-Thompson prediction 
(Eqn. 1, left) and the Carman-Kozeny equation (Eqn. 2, right) for all data. Symbol 
colours are the same as in Figure 4. 

 
 

[a]  [b]  

Figure 4: Comparison of the prediction of Eqn. 3 (left) and Eqn. 4 (right) to the 
permeability data for all samples. 

 




