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ABSTRACT 
Pore network models, in which the pore space is represented by a 3D network of 
interconnected pores and throats, are used extensively to compute important macroscopic 
transport properties including capillary pressure, relative permeability and residual 
saturation [2,6,12]. The predictive value of network models depends on the accuracy with 
which the network captures the complex geometric and topological properties of real 
porous rocks. A practical approach for a wide range of rock types is to extract networks 
and network properties directly from high-resolution 3D images of the pore space [2,7,8].  
To ensure that generated networks are accurate representations of the imaged rock one 
must overcome problems of sensitivity to image noise and the lack of a robust procedure 
for merging adjacent nodes to form pores. One must also be able to generate networks on 
3D volumes that are sufficiently large to be representative . 

We present an evolutionary approach for network extraction that uses the medial axis 
transform together with a number of morphological measures to select tessellation 
boundaries and applies a new node merging algorithm. The algorithms are fully parallel, 
allowing very large networks containing up to a million nodes to be generated. The 
power and flexibility of the network extraction procedure is illustrated by examining 
micro-CT images for a number of sandstone and carbonate samples at image sizes of up 
to 20003 voxels and resolutions down to 2 microns. The variability in network structure 
obtained across the range of samples imaged highlights the need to generate realistic pore 
network structures when attempting to perform predictive two phase flow modeling. 

INTRODUCTION 
There are several reasons why a core analyst would want to generate a network of pores 
and throats that is representative of the pore space of a reservoir rock.  For one, the pore 
throat network contains a wealth of geometrical and topological information that can be 
invaluable in characterising the morphological structure of the pore space.  However, the 
main reason for generating pore networks is that they are the input to network models, 
which remain the most promising method for modelling multi-phase fluid 
displacements[1]. 

The advent of X-ray micro-tomography has enabled the pore space of reservoir rocks to 
be imaged.  Images containing 20003, or 8 billion voxels, are routinely generated and 
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phase contrast imaging enables resolutions of 300nm or better [2, 3].  In parallel with 
these experimental advances, a number of research groups have developed methods to 
generate pore-networks that capture the pore space of imaged rocks[4-8]. 

The problem of network generation is essentially one of partitioning the pore space into 
simple building blocks, or components.  Adjacent components are connected by links, 
forming a network.  There are two main schools of thought as to how best identify these 
building blocks.  The first [4,5] uses the medial axis transform to reduce the pore space to 
its 1D line skeleton.  The junctions in the skeleton then form the basis for pore bodies, 
while the chains of voxels connecting them are identified with pore throats.  One must 
then process the skeleton, primarily by merging junctions that are in close proximity, to 
generate the pore network.  Fundamental to the medial axis approach is the assumption 
that the pore network is first and foremost a topological representation of the pore space. 

The other school of thought [6] takes issue with this assumption, and instead relies solely 
on the tools of mathematical morphology to arrive at a partitioning of the pore space.  In 
this paradigm, the pore network is primarily a geometrical concept.  This rationale can 
easily be justified since pure capillary-driven fluid displacement is a geometrical process; 
indeed mercury porosimetry can be very effectively simulated directly on a binarised 
image, using little more than the basic tools of mathematical morphology[9].  In addition, 
one can easily postulate scenarios in which junctions in the medial axis simply do not 
correspond to geometric openings, and vice versa. 

However, there are a number of serious shortcomings to the geometrical approach.  First 
is the sensitivity to noise.  It is easy to see that small perturbations to the surface of the 
grain space can lead to large variations in the resultant network.  When applying a purely 
morphological model to a real rock image, one is forced to post-process the carefully 
derived network by an additional merging step, thus losing much of the intuitive appeal 
of this method [6].  The second drawback of the geometric approach is that there is no 
longer a defined relationship between the topology of the pore network and that of the 
original pore space.  A great many geometrical features produce loops in the resulting 
network that were not present in the original pore space, while, on the other hand, there is 
no guarantee that pore bodies will be simply connected. These two shortcomings 
exacerbate each other’s effects to the extent that a network based on geometry alone must 
be treated with caution. 

In this work we try to capture the best of both worlds.  We insist on building blocks that 
are simply connected, and on generating a network that is homeomorphic to the original 
pore space.  We therefore base our network structure on the medial axis, and also use a 
broad range of tools from mathematical morphology to best capture the pore-space 
geometry within the topological constraints. 

 

ALGORITHM 
Beginning with a reconstructed, grey-scale tomographic image, our method proceeds in 
multiple steps.  All the steps outlined here are performed by the in-house “mango” 
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parallel toolkit for morphological analysis and network generation and have been 
performed on images containing up to 20003 voxels. 

 
Image Processing And Segmentation 
As explained in [10], we apply anisotropic diffusion for edge-preserving noise reduction, 
followed by the unsharp mask filter for edge enhancement.   After this, high contrast data 
sets can be segmented using simple thresholding, while more complex samples mandate 
use of the method of converging active contours.   

Medial Axis Transform 
To minimise ordering effects and ensure that the medial axis is as close to the geometric 
centre as possible, we calculate the medial axis using distance ordered homotopic 
thinning [11].  Voxels are treated in order of their Euclidean distance values, and are 
removed only if their removal does not change the homotopy (or, equivalently, the Betti 
numbers) of the pore space.   We have found that by applying a Gaussian smoothing 
kernel to the Euclidean distance map, and using this as the ordering function for the 
thinning algorithm, that the resultant medial axis contains fewer spurious features.   We 
have also found it better to perform the first few steps of the homotopic thinning 
assuming that the object being thinned is 6-connected, before switching to 26-
connectivity for the remainder of the process.   This eliminates connections being formed 
across voxel corners or edges, while still allowing the final medial axis to have 26-
connectivity. 

This algorithm has been parallelised using a time warp optimistic parallel discrete event 
simulator, and it has been run on hundreds of cpus routinely, finding the medial axis of 
samples containing up to 8 billion voxels. 

 
Network Connectivity 
The topology of our medial axis based pore network is completely defined by the pore 
space.  On the other hand, the connectivity of this network is non-unique and can vary 
enormously.  This is because one can merge or divide nodes of the network without 
changing the topology of the network.  Any operation that does not collapse an existing 
ring, or create a new ring, is allowed.  In addition, one can also add or remove any 
number of two-connected nodes within throats/links/edges. 

We construct a starting network by dividing the medial axis into clusters of voxels that 
are (26-) adjacent to more than 2 other medial axis voxels, and  chains of voxels that 
connect just two other medial axis voxels.  Since this starting network will be composed 
almost entirely of 3-connected nodes which represent only parts of pore bodies, merging 
is of critical importance to a medial axis derived network. 

Previous merging algorithms seem to have neglected two important issues: topology 
preservation and snowballing.  When merging pores, one must be careful not to merge 
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two pores that are already connected to one another by more than one throat.  If this 
occurs, then the non-collapsed throat becomes a loop that connects the merged pore body 
to itself, which can therefore play no role in the transport.  This altering of the network 
topology is clearly undesirable behaviour and is forbidden in our algorithm.  Snowballing 
occurs when one merges pores using the purely local criteria proposed previously.  Figure 
1 shows a type of geometry in which undesirable pore merging can occur.  To a local 
analysis, each pair of pores seems to be a good candidate for merging; it is only when one 
stands back and observes the newly merged pore in its entirety that the folly is exposed.  
While this may appear to be a singular pathological example, our experience shows that, 
in fact, the majority of pore bodies are “pathological” in one way or another. 

To address these issues, our merging algorithm operates as follows: 

1.  The quality of each throat is calculated as a nonlinear combination of its constriction 
ratio and length-width ratio.  The constriction ratio measures the ratio between the 
smaller of the two maximal radii in the adjoining pore bodies adjoining the throat, and the 
smallest radius in the throat.  The length-width ratio measures the ratio between the throat 
length, defined as the straight-line distance between the pore centres, and the minimum 
throat width.  These measures are combined in such a way that very short throats always 
have extremely low quality, while very constrictive throats always a high quality.   
Throats whose quality is below a certain threshold are candidates for removal. 

2.  The throats that are candidates for removal are stored in a list, sorted from lowest to 
highest quality, from which the lowest quality throat is extracted for treatment at each 
step.  If removal of a throat doesn’t change the network topology, then it is removed.  In 
that case, the newly formed pore will have a new centre of geometry, and is maximal 
radius will come from the larger of its two constituent pores.  The new centre and radius 
is therefore used to update the quality of any low-quality throats connected to the new 
pore. Normally the change will increase the quality of the throats, thereby reducing their 
likelihood of being merged. 

3. The algorithm terminates when there are no more low quality throats that can be 
removed without changing the network topology.  

It should be emphasised that without dynamic updates of throat qualities during the 
merging process, it is not possible to avoid snowballing.  
 
Geometric Partitioning 
Having determined the connectivity, i.e. identified all the pore bodies and throats in the 
network, it remains to determine the geometry of these components, which means that 
one must partition the pore space. Whether one needs to partition the pore space into pore 
bodies and pore throats, or just into pore bodies,  is an issue of some controversy in the 
network modelling literature.  Some network models appear to need some volume 
allocated to throats [1,12] in order to match experimentally observed residual saturations, 
while other models [13] perform adequately without this additional complexity.  Our 
algorithm first partitions the pore space into pore bodies alone, then takes volume from 
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the pore bodies to form pore throats.  We can therefore easily generate networks for 
either type of network model. 

First, we partition the pore space into pore bodies, without allocating any volume to 
throats: in this model, a throat is just the surface where the regions surrounding two 
adjacent pores touch.  This partitioning is achieved using the watershed transformation[9] 
applied to the (smoothed) Euclidean distance map,  initialised with seed regions formed 
from the medial axis voxels associated with each pore body.  The watershed transform 
expands from the seed voxels, processing neighbouring voxels in order from highest to 
lowest Euclidean distance, and assigning them to the same cluster as their highest-valued 
neighbour.  The watershed surface of the distance transform forms a good definition of 
the minimum throat constriction. 

Next we take each of these pore bodies and allocate some of its volume to the pore 
throats that connect to it.  Our definition of pore bodies and throats simulates the 
following experiment: fill the pore body with wetting phase, then fill the maximal 
euclidean sphere of the pore body with non-wetting phase.  This configuration is the 
lowest capillary pressure at which the non-wetting phase can be present in the pore body.  
Then, successively increment the capillary pressure, which decreases the hydraulic 
radius, enabling the region of non-wetting phase to expand into smaller and smaller 
constrictions.  Eventually, the wetting-phase in one of the throats that adjoin the pore 
body will be disconnected from the other throats.  The growth into that throat stops, and 
the boundary between the pore and the throat is defined.  The growth continues until all 
the throats have been disconnected from one another. 

Analysis of the profile of each throat (akin to [5]) can be used to decide whether or not 
the throat contains more than one genuine constriction, in which case it is divided and a 
pore body, perhaps more than one, is inserted.   This processing step has not been applied 
to the networks presented in this study.  We will include this in future work. 

 

DATA SETS 
This study is based on four datasets. We have taken 6003 subsets from four 20003  
tomographic images captured using the ANU high-resolution CT facility[2].  Slices from 
these images are shown in figure 2. Armed with fully  parallel algorithms, we have the 
capacity to study the full 20003 data sets, but here we present preliminary results. 

Due to the finite resolution and inaccuracies in the reconstruction process, there is an 
uncertainty in the segmentation step.  To estimate the sensitivity of subsequent analysis to 
the variation of segmentation parameters,  we perfomed three different segmentations on 
two of the data sets: one with porosity near the lower limit of acceptability (“low”), 
another near the top limit (“high”), and one in the middle(“mid”).  Table 1 shows the 
porosity of these three data sets before and after removal of isolated clusters.  Only the 
poorly connected data set B shows a significant disconnected fraction.  Table 1. also 
shows the critical radius[14] of these data sets, calculated by percolation on the medial 
axis.   
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To further explore the parameter space, we generate 3 different networks for a number of 
the “mid” segmented images that we have already obtained.  These networks differ in the 
amount of pore merging that is performed.   As with the different segmentations, these  
“merge” and “nomerge” data sets lie near the reasonable limits of the parameter space.  
Note that the topology (genus) of all the networks arising from the same segmented 
image is the same, but the connectivity and the number of pores and throats is different. 

 

RESULTS  
Table 1 summarises the results of this work.   lvox is the voxel size, in µm.  The instrument 
resolution is around 2µm, so these runs are near but not at the limit of the facility. φ and 
φIC are the porosity before and after the removal of isolated clusters.  it can be seen that 
none of the samples have a great deal of disconnected pore space, although the 
disconnected fraction was up to 10% of the porosity for lower porosity samples.  lc is the 
critical radius of the pore space, defined as the largest sphere that can be pushed through 
the pore space from one of the sample side to the other.  The critical length is a 
surprisingly good predictor of permeability [14].  Np and Nt  are the number of pores and 
throats in the generated networks, while Np(red) and Nt(red) show the proportion of pores 
and of throats that were lost in the pore merging process.  G/mm3 is the genus, or the 
number of handles, calculated as the difference between the number of throats and the 
number of pores, expressed per unit volume; <z> is the average coordination number of 
the pores in the generated network, while zmax is the maximum coordination number; 
<RS> represents the mean ring size.  Rings, or minimal circuits, are defined to be strong 
rings [14].  Interestingly, the average ring size does not vary greatly between the samples, 
although the ring size distributions, which we do not present, show significant variation.  
<rp>  and <rt>  are the average pore and throat radius respectively.  It is worth noting  
that the average throat radius, and the critical length lc  are  only a few voxels, indicating 
that for the sandstone samples, there is a lot of important feature at or near the limit of 
resolution.  On the other hand, the highly permeable limestone has a much larger critical 
length, meaning that its plethora of small throats play little part in the permeability.  <lt> 
is the average throat length, measured as the distance between the pore centres, while  
<rp/rt>  is the average constriction ratio, or the ratio between a pore’s radius and the 
radius of the throats surrounding it.  pc(s) and pc(b) are the site and bond percolation 
thresholds of the network.  These are the fraction of sites (pores) or bonds (throats) that 
need to be filled in order that a cluster of filled elements connects across the sample.  We 
have calculated these thresholds since percolation processes capture much of the 
dynamics of multiphase flow. 
 
The networks appear to be rather robust to both the segmentation parameters and to the 
criteria used in the merging of overlapping pore bodies.   The samples segmented at 
higher porosities are better connected, and show higher coordination numbers and 
marginally bigger pore and throat sizes.  The networks produced by varying pore merging 
criteria show significant but not unexpected variation in all parameters.  In these data 
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sets, there is no evidence of instability or nonlinear sensitivity to these parameters: small 
changes in the input data result in small changes to the resultant networks. 
The most striking result of this study lies in the connectivity of the pore networks,  
particularly of the two sandstones, and the consequences that this has for the percolation 
threshold.  Figure 2 shows the obtained networks, which are very  different from one 
another in appearance and measures, despite appearing to be similar in two-dimensional 
slices.   The sandstone-1 network is of particular interest in that despite having an average 
coordination number of only 4.3, it has very many 3-rings.  This is perhaps an 
explanation for its rather high percolation threshold of 0.50.  Indeed, the large variation in 
the percolation threshold between the networks, despite having reasonably similar 
coordination numbers, shows that these rocks possess very interesting topological 
structure.  
To understand better the prevalence of 3-rings in the sandstone-1 sample, we took a very 
small subset containing a 3-ring and present it in figure 3.  This subset is fascinating in 
that it is not immediately apparent how best to represent it as a network.  The main 
feature is a large donut shaped element with a reasonably small hole in the middle - very 
much what one would expect from two touching grains.  Our topological merging criteria 
forbids us from merging it, so our network forms a 3-ring around the donut.  It is clear 
that this feature represents a genuine 3-ring that is not an artefact of the network 
extraction. Given that this type of feature is visible throughout the data set, we conclude 
that 3-rings are a real feature. 
 
CONCLUSIONS AND FURTHER WORK 
This preliminary study raises more questions than it answers, and we do not yet have a 
coherent understanding of the structural characteristics that underlie the results that we 
present here.  We can, however, draw some concrete conclusions.  Firstly, the network 
generation method is robust to variation in the parameters that govern both image 
segmentation  and pore merging.  This is very encouraging.  It is also very encouraging 
that, despite the great variability in the networks and rock types considered, that the vast 
majoriy of throats in the generated networks represent genuine constrictions to flow.   
We have also demonstrated that use of the non-local pore merging algorithms, such as the 
one that we introduce here, is critical for achieving representative networks. 
Future work will initially focus on further validation of our network extraction algorithm.  
We are in the process of developing measures to better quantify how well a network 
represents the pore space.   By examining a large selection from the wide range of rock 
samples that have been imaged in our department, we hope to build up a coherent picture 
of the interrelationships between these measures. 
It is also of critical importance to directly compare our networks with those generated 
using other means.  To this end, we aim to share our data and results with other groups 
conducting similar research. 
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Figure 1. Cross section through a geometry that will be mishandled by local pore merging 
rules.  This whole object, being composed  of overlapping maximal spheres, will be 
merged into a single pore unless a more sophisticated approach, such as that presented 
here, is used.  
 
 
 Sandstone-1 Sandstone-2 Limestone 
 High Low Mid Merge NoMrg Mid Merge NoMrg Low Mid 
lvox 4.38 ¬ ¬ ¬ ¬ 5.6 ¬ ¬ 3.0  
φ 18.4% 18.4% 18.4% ¬ ¬ 25.2% ¬ ¬ 42.5% 46.9% 
φIC 18.3% 14.7% 16.7%  ¬ ¬ 25.1% ¬ ¬ 41.1% 46.1% 
lc 10.5 7.4 9.2 ¬ ¬ 11.8 ¬ ¬ 27 28.5 
Np 8407 6921 7876 7218 8915 17160 15094 20853 9362 10408 
Np(red) 44% 40% 42% 47% 34% 48% 54% 22% 46% 48% 
Nt 17997 14267 16593 15935 17632 41389 39323 45082 20713 45082 
Nt-(red) 27% 26% 26% 29% 22% 28% 32% 22% 29% 29% 
G/mm3 529 405 480 480 480 639 639 639 1947 2305 
<z> 4.3 4.1 4.2 4.4 4.0 4.8 5.2 4.3 4.4 4.6 
zmax 26 23 29 29 18 30 29 24 67 80 
<RS> 5.8 5.9 5.9 5.7 6.1 5.7 5.5 6.0 5.1 5.2 
<rp> 21 21 21 21 21 25 26 25 19 20 
<rt> 10 9 9.5 9.3 10 12 11 12 8.7 9.3 
<lt> 110 120 110 120 100 130 140 120 82 83 
<rp/rt> 2.9 3.0 3.0 3.1 2.8 2.7 2.8 2.5 4.1 4.2 
pc(s) 0.46 0.49 0.47 0.45 0.50 0.37 0.35 0.39 0.42 0.39 
pc(b) 0.35 0.38 0.36 0.33 0.41 0.28 0.24 0.28 0.27 0.25 
 
Table 1.  Summary of the statistics gathered from the pore-networks generated from the 3 
rock samples studied in this work.  See the text for an explanation of the symbols used in 
this table.  
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                         (a)                                                             (b) 
 

 
(c) 

 
Figure 2. Images of grey-scale and segmented images, shown adjacent to networks for 
the 3 rock types studied.  (a) sandstone-1; (b) sandstone-2; (c) limestone.  200 pore 
bodies (nodes) are shown in (a) and (b), while 2000 are shown in (c). 
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Figure 3. Medial axis and pore network overlaid on a portion of the sandstone-1 dataset, 
illustrative of a geometry and topology that is difficult to express as a network.  Throats 
are 25% of their true radius. 




