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ABSTRACT 
A new approach to the estimation of the inertia flow coefficient, also called the 
turbulence factor, is proposed. This parameter, often named β, is the coefficient in the 
non-Darcy (second order) term of the general flow equation, for which the value 
normally needs to be determined through special core measurements, or  derived from 
isochronal or multi-rate production tests. 
 
The proposed formulation takes into account permeability, as well as porosity and 
formation resistivity through the Archie formation resistivity factor. The significance 
of the resistivity parameter is explained. The formulation utilizes a concept of actual 
fluid velocity, rather than volumetric flux in the derivation of the formulae for the β-
factor. 
 
The formulation has been tested against a wide range of core measurements – in 
addition to well test results. A regression analysis including a total of 83 cores, 
geographically scattered, with permeabilities varying from 0.01 mD to 3.6 Darcy and 
porosities in the range of 2.2 to 27 percent, yielded a regression coefficient (R2) of 
0.96. Dolomite samples fitted the correlation to the same degree as sandstones.  
 
The proposed expression also leads to an alternative formulation of the general flow 
equation, indicating that the flow of a single-phase fluid through a porous medium to a 
great extent resembles the flow through pipes. The alternative formulation includes the 
definition of a porous media friction factor, equivalent to the friction factor used in the 
Fanning equation describing pressure gradients in pipes as a function of fluid velocity. 
 
INTRODUCTION 
More than 100 years ago, Philippe Forchheimer [1] published his paper: 
“Wasserbewegung durch Boden” where he demonstrated that permeability, as defined 
by Darcy’s law, appeared to decrease under high fluid velocity conditions. 
 
Based on this observation, he formulated an extension to Darcy’s law, resulting in the 
well-known Forchheimer’s equation: 
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Where: 
 ∇P = pressure gradient 

u = superficial velocity (volumetric flux) 
 β = inertial flow coefficient. 
 kd = darcy permeability 
 
For other parameters, see nomenclatures. 
 
The essential parameter in this equation is the inertial flow coefficient, also called the 
turbulence factor, non-Darcy flow coefficient and various other names dependent on 
the author’s view of what it represents. In this paper we will call it the beta-factor or 
simply β. 
 
Fluid velocity conditions for which the second order term of the Forchheimer’s 
equation will become important may frequently occur near the well bore of high flow 
rate gas wells and in the proppants pack of hydraulic fractures. In the reservoir itself, or 
in normally operated oil or water wells, non-Darcy flow is rarely a challenge. 
 
Even though β is frequently called the turbulence factor, several researchers, including 
J. Geertsma [2] and Katz and Firoozabadi [3] rejects that the phenomena has anything 
to do with turbulence, mainly because the fluid velocities, even in well-bore 
proximities, are generally far too low for turbulence to occur. 

 
Other authors, such as Jones [4] and Barre [5] have observed that β is not a constant, 
but will tend to decrease with increasing rates. The Forchheimer equation will thus 
over-predict the pressure loss at very high rates if this decrease in β is not accounted 
for. Barre suggests the use of an apparent permeability model in the form of a Log-
Dose equation, with the definition of a Minimum Permeability Plateau (kmin), with the 
ability to cover the whole range of rates from normal Darcy flow to beyond the normal 
applicability of the Forchheimer equation. 
 
Nevertheless, even though we do not contest the formulation proposed by Barre and 
others, we still believe that the Forchheimer equation, assuming β to be constant, is 
applicable and sufficiently accurate for most practical purposes. It also serves as a 
simple basis for the determination of non-darcy flow, in the lab as well as in the field. 
 
For laboratory measurements, equation ( 1 ) is integrated and rearranged into the 
following form: 
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Where:  
M = Molecular weight of the gas  
Pl = Inlet pressure  
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P2 = Outlet pressure  
T = Absolute temperature  
z = Real gas deviation factor at average pressure  
µ = Gas viscosity at average pressure  
L = Length of core  
R = Real gas constant  
u = Mass flux  

 
If the temperature is constant and the pressure differences are small relative to the 
absolute pressure in the core, z and µ can be regarded as constants, and a plot of the 
left hand side of the equation vs u/µ will give a straight line. The slope of the line gives 
the beta-factor, and the intercept gives the reciprocal of the permeability.  
 
BETA-FACTOR CORRELATIONS 
Several correlations of the beta-factor have been published. All correlations found in 
literature use permeability or combinations of permeability and porosity, as correlation 
parameters.  
 
The general form of these equations is: 

( ) ( ) bka nm += ϕβ loglog ( 3 ) 

In which a, b, m and n are given different values. 
 
The beta-factor must have the unit of reciprocal length [ft-1] in order to be consistent 
with the general flow equation. Only correlations where a = 1 and n = -0.5 will give the 
correct unit as long as log-l(b) is a dimensionless correlating constant. The only 
correlation found that has this quality is the one proposed by Geertsma2: 

( ) ( ) 3.2loglog 5.05.5 −= −− kϕβ ( 4 ) 

or on a more useful form (using standard oilfield units): 

[ ]15.05.5005.0 −−−= ftkϕβ  ( 5 )

Compared to other correlations found in literature this is about average with regard to 
correlating quality. 
 
A new attempt was made to develop a more accurate correlation. Included in the 
correlation basis (see Figure 1) were data from analysis of sandstone cores from North 
Sea reservoirs (well 1 through 3), data published in the papers from Geertsma [2] and 
Firoozabadi [4] and data collected from the Handbook of Natural Gas Engineering [6]. 
A total of 82 cores were included, geographically scattered, with permeabilities 
ranging from 0.01 mD to 3.6 Darcy and porosities ranging from 2.2 to 26.7 percent. 
Limestone (dolomite) samples collected from [6] were also included.  
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The result of this correlation exercise, using all the available core measurements, was 
the following equation for the beta-factor: 

( ) ( ) 65.5loglog 17.1 −= −− kϕβ ( 6 ) 

Or in linear form: 

km /−= λϕβ  ( 7 ) 

In which λ = 2.24x10-6 (=10-5.65) and the exponent m equals 1.70. 
 
The correlation is shown in Figure 1. The regression analysis gives a correlating 
coefficient (R2) of 0.96. The standard error of the log(β) estimates  is 0.28. Inclination 
ratio of the regression line (a) is 1.00.  
 
With n = -1, the correlating parameter λ must have the unit of length [m] in order for 
equation ( 6 ) to be unit consistent. 
 
As may be observed from Figure 1 the discrepancies between calculated and measured 
data are most severe in the low permeability/high beta-factor region. This should be 
expected due to the greater uncertainty, both in permeability and beta-factor 
measurements in this range.  
 
Analysis of distribution of errors of the log(β) estimates indicates  typical normal 
distribution, even though some extremes (as mentioned above) tend to disturb. The 
normal distribution, which is very typical for experimental errors, is also confirmed by 
the fact that 68 % of the estimates lie within ± one standard deviation, in this case 0.28. 
 
Geertsma's correlation ( 4 ) applied to the same data gives a correlating coefficient of 
0.85 with a standards error of log(β) estimate of 0.56. 
 
THE ACTUAL FLUID VELOCITY CONCEPT 
The equations generally used as basis for experimental determination of the 
beta-factor, ( 1 ) and ( 2 ) have volume or mass rate per unit area i.e. volume or mass 
flux as the independent variable. The actual velocity of the fluid in the core is thus not 
accounted for in these types of experiments. 
 
The obvious reason for this is that the actual velocity is difficult to determine as long 
as the actual length and cross section of the flow paths are unknown. Moreover when 
considering only the linear portion of the flow equation, i.e. Darcy's law, the use of 
flux is acceptable since a fixed ratio will always exist between the flux, actual velocity 
and pressure gradient independent of the flux value.  
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However, it is reasonable to assume that the phenomena determining the pressure 
gradient in a fluid flowing through a porous medium are functions of the actual 
velocity of the fluid, rather than the volumetric flux. 
 
Figure 2 show very schematic drawings of two hypothetical flow paths through a core. 
In core a, the flow path follows a straight line through the core, while in core b 
(representing a real porous media) the length of the flow path is longer than the length 
of the core. L is the length of the cores while the sum of L1 through L3 makes up the 
total length, Le of the flow path in core b. The section L2 in core b gives the flow path 
additional length in excess of the core length. The pore section L2 also contributes to 
an increase in porosity which does not result in an increase of the fraction of the core 
cross-section open to flow. A and a denominates the x-sectional area of the cores and 
the pores respectively. 
 
If both cores are exposed to the same flow rate q, the average velocity of a fluid 
particle traveling through core a, (v1) will be: 
v1 = q/a 
 
while for core b where the path is longer, the average velocity (v) will be: 
 
v = (q/a)*(Le/L) = v1*(Le/L) 
 
The porosity of the cores is: 
 
Core a: φ1 = a/A 
 
Core b: φ = (a/A) *(Le/L)  a = φA*(L/Le) 
 
Substituting this equation for a into the equation for v above, we get: 
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Where u is the volumetric flux through the core. 
 
The expression (Le/L)2/φ found in ( 8 ) is the same as the general expression for the 
formation resistivity factor (also called formation factor) i.e. the ratio between the 
resistivity of a completely brine saturated rock to the resistivity of saturating brine i.e.: 

ϕ/)/(/ 2LLRRF ewo == ( 9 )
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The ratio (Le/L)2 is commonly termed 'tortuosity'. Particularly for clean sandstones this 
ratio can be successfully correlated with porosity resulting in the following formula for 
the formation resistivity factor (Archies formula): 

mF −= ϕ  ( 10 )

The exponent m in ( 10 ) is frequently called the cementation factor. For clean 
sandstones it normally exhibits a value between 1.5 and 2.0 (somewhat higher for 
limestones). The cementation factor generally increases with the amount of 
overburden, thereby increasing the formation factor. 
 
The development of equation ( 9 ) is based on the same logic as is the basis for ( 8 ), 
using electric current rather than actual fluid flow. It should therefore be reasonable to 
assume that the measured formation factor is also an adequate expression for the ratio 
of the average fluid velocity in the core to the volumetric flux through the core 
particularly for a single-phase flow. 
 
Combining equations ( 8 ), ( 9 ) and ( 10 ) gives the following expression for actual 
fluid velocity in the core: 

muuFv −== ϕ  ( 11 )

By replacing u with v/F and substituting β with the expression given in ( 7 ) into the 
general flow equation ( 1 ), we obtain: 
 
    -∇P = µv/(kF) + λφ-mρv2/(kF2) 
 
And assuming that the factor m in the expression for the beta-factor is the same m 
which is found in the formation factor equation ( 10 ) the general flow equation will 
get the following form in terms of actual velocity: 
 
      -∇P = µv/(kF) + λFρv2/(kF2) 
 or 

)/()/( 2 kFvkFvP λρµ +=∇− ( 12 )

and  
kF /λβ =  ( 13 )

 
Approximately 30 of the cores used in the beta-factor correlating exercise described 
above did also have formation factor reported. Regression analysis of the beta-factors 
measured on these cores, using actual formation factor rather than the average m value 
of 1.7, verifies equation ( 13 ) (see Figure 3). The inclination of the regression line is 
again very close to unity (0.99). The correlating coefficient (R2) is 0.95 and the 
standard error of log(β) estimate is 0.18. λ is equal to 2.7 µm. 
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SIMILARITY TO PIPELINE FLOW 
The Fanning equation describes pressure loss in a single-phase pipeline flow as: 

hdvfP /2 2ρ=∇−  ( 14 )
Where: 

∇P = pressure gradient 
f = Fanning friction factor 
ρ = fluid density  
v = fluid velocity 
dh = hydraulic diameter 
 

For fully laminar flow, the friction factor can be expressed as: 
)/(16/16 he vdNRf ρµ== ( 15 )

(NRe is the Reynolds number) and the Funning equation ( 14 ) turns into the 
Hagen-Poiseuille equation for laminar flow: 

2/32 hdvP µ=∇−  ( 16 )
By comparing ( 14 ) and ( 16 ) to the general flow equation in terms of average 
velocity ( 12 ) we see that the linear part of this equation (Darcy's law) is similar to the 
Hagen-Poiseuille equation for laminar flow, provided that: 
 
       kF = dh

2/32 
 
which brings about that the average hydraulic diameter of the pores for which laminar 
flow exist will be equal to: 

kFdh 24=  ( 17 )
Substituting the expression for dh given in ( 17 ) into ( 15 ) will give the following 
equation for the Fanning friction factor for laminar (low velocity) flow through porous 
media: 

kFvfl ρµ /22=  ( 18 )

 
By defining a high velocity or “turbulent flow” friction factor for porous media 
(dimensionless) as: 

kFfh /22 λ=  ( 19 )

we may substitute this friction factor together with ( 17 ) for dh into the Fanning 
equation ( 14 ). This makes the Fanning equation become equal to the non-Darcy part 
of the flow equation ( 12 ): 

)/()24/(/22/2 222 kFvkFvkFdvfP hh λρρλρ ===∇−  ( 20 )
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Adding the two together, we get a total Fanning friction factor, accounting for both 
high and low-velocity flow: 

)/)(/22( λρµ +=+= vkFfff hlt ( 21 )

Substituting this friction factor into the Fanning equation and replacing dh with ( 17 ) 
gives the following general equation for single phase flow through porous media: 

)24/()/)(/22( 2 kFvvkFP ρλρµ +=∇− ( 22 )

which implies that 
 

-∇P = (µv + λρv2)/(2kF) 
 
A porous medium friction factor may be defined as: 

kFvff tr )/(22/ λρµ +== ( 23 )
And the general flow equation will take the following form: 

kFvfP r /2ρ=∇−  ( 24 )
 
DISCUSSION 
Equation ( 24 ) does not represent a new definition of the general flow equation. If the 
expression for the porous media friction factor given in ( 23 ) is substituted into ( 24 ), 
and v and λ are defined as in ( 7 ) and ( 11 ), Forchheimers equation will reappear. The 
formulation of the flow equation given in ( 24 ) does however indicate a strong 
similarity between flow through pipes and flow through porous media. 
 
This similarity, and the existence of a parameter in the friction factor formula ( 23 ) 
which is apparently independent of the fluid flow is pointing in the direction that 
turbulent, or turbulence-equivalent, flow may exist in the core along with laminar flow. 
To claim this now, after most researchers have definitely abandoned this theory, may 
be inadequate. However, some reasons exists - as discussed below - for re-inventing 
this concept. 
 
For pipeline flow, the Reynolds number is defined as: 

)16/( µρ he vdNR =  ( 25 ) 
Substituting ( 17 ) for dh and otherwise using gas and flow data reported from the 
beta-factor experiments give average Reynolds numbers ranging from 1 through 5 for 
most experiments. According to the definition of semi-turbulent flow in pipes with 
normal relative roughness, i.e. with Reynolds number less than approximately 2300, 
this supports the theory that turbulent flow is not the reason for the observed departure 
from Darcy's law. 
 
However, it should be easy to imagine that a flow path through a core will vary 
significantly in cross-sectional area. Assuming that the same gas volume has to pass 
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through all sections of the flow path in a given time interval, the expression above 
gives that the NRe at any point in the path will be inversely proportional to the 
hydraulic diameter (dh) of the path at that point. The actual Reynolds number may 
therefore, at several places in the core, be significantly greater than the average. 
 
It should also be possible to accept that the relative roughness of a flow path in a core 
could be enormous compared to relative roughness found in pipes. From pipeline flow 
theory, it is known that the relative roughness of the pipe determines the limit for 
Reynolds number for which the flow becomes fully turbulent and the friction factor 
becomes a function of relative roughness only. This limit function can be expressed as 

)3/(2000 εdNRe >  ( 26 )
where ε is the absolute roughness of the pipe wall. This limit function indicates that a 
laminar flow is more easily converted to completely turbulent flow in a high roughness 
environment. 
 
For Reynolds numbers greater than this limit, the flow is fully turbulent, and the 
friction factor can be estimated by the von Karman equation: 

)7.3/log(4/1 df ε−=  ( 27 )

Equation ( 27 ) is obviously empirical. For very high values of relative roughness, the 
friction factor calculated by this equation becomes roughly proportional to the relative 
roughness of the pipe. Or if the absolute roughness is constant, it becomes inversely 
proportional to the hydraulic diameter. This is equivalent to the high velocity porous 
medium friction factor (fh) being inversely proportional to the square root of kF ( 19 ). 
By analogy, the λ will then be a function of the absolute roughness in the flow paths. 
 
The theory described above has been developed and tested for pipeline flow, where all 
parameters are well defined, and the friction factor and relative roughness stay within 
reasonable limits. Applying this theory to porous media may seem unreasonable, but 
the fact that a friction factor for a porous media can be defined, obviously equivalent to 
the friction factor defined for turbulent pipe flow, and apparently independent of other 
variables than the average diameter of the pores, is indicating that the theory described 
above may apply to porous media as well as to pipes. The formulation of the porous 
medium friction factor ( 23 ) indicates that single phase flow through a porous medium 
is either fully laminar or fully turbulent, no intermediate -semi-turbulent - regime 
exists. However, the two flow regimes may coexist within the same porous media. 
 
The fact that the departure from Darcy’s law increases gradually with increased 
velocity may be explained by the great variations in flow path diameter mentioned 
earlier. As the velocity of the fluid increase, the fraction of the flow path where the 
flow is turbulent will also gradually increase, giving an apparent smooth departure 
from Darcy’s law for the total pressure drop.  
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CONCLUSIONS 
An equation has been developed (13) which defines the beta-factor (β) in terms of 
permeability, formation resistivity and a third factor, λ, with a unit of length. A further 
determination of the factor λ has not been successful, but there are reasons to believe 
that it may be a function of the absolute roughness of the flow conduits inside the 
porous media. 
 
The variations in λ are fairly narrow. For the majority of the cores used in this study, 
and for which formation factor data are available, the variations might in fact be 
explained by experimental errors in the measurements of permeability, formation 
resistivity factor and/or beta-factor. 
 
Considering experimental errors in routine core analysis and uncertainties introduced 
by applying laboratory determined core data to subsurface reservoir environment and 
conditions, it is likely that determination of the beta-factor by (13), using an average 
value of 2.5 µm for λ, would yield sufficient accuracy for most practical purposes. 
Particularly for sandstone reservoirs, from which most of the data used in the 
regression analysis were obtained, using the mentioned value for λ should be 
acceptable. 
 
The formation resistivity factor required in this beta-factor correlation will normally 
also be available from well log analysis. It should thus be possible to obtain reliable 
beta-factor data from single rate well tests, using standard Horner analysis to determine 
permeability, even if core data from the test intervals are unavailable. 
 
A new formulation of the general flow equation has also been developed, expressing 
pressure gradient in terms of average fluid velocity rather than volumetric flux. The 
equation strongly resembles the Fanning equation used to calculate pressure drop in 
pipelines. The formulation includes a porous media friction factor equivalent to the 
Fanning friction factor used for pipelines. This friction factor is a combination of a 
fluid and flow dependent part and a rock or pore geometry dependent part. This 
indicates, by pipeline flow analogies, that laminar and turbulent flow may coexist in a 
porous media and be the main reason for the observed departure from Darcy's law at 
high velocities. 
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Figure 1: General β-factor correlation 
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Figure 2: Schematic flow path 
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Figure 3: β-factor correlation using actual formation resistivity (F) 
 
 
NOMENCLATURE 
A = cross-sectional area  
dh = hydraulic diameter  
F = formation resistivity factor  
f = Fanning friction factor for pipeline 
flow  
fl = friction factor for laminar flow in 
porous media  
fh = friction factor for turbulent flow in 
porous media  
fr = general porous media friction factor  
k = absolute permeability  
L = length of core  
Le = length of pore  
M = molecular weight of gas  
m = cementation factor  
NRe = Reynolds number  
P = pressure  
P1 = inlet pressure  

P2 = outlet pressure  
R = real gas constant  
Ro = resistivity of brine saturated 
rock  
Rw = resistivity of saturating brine  
T = absolute temperature  
u = superficial velocity (volumetric 
flux)  
v = velocity  
z = real gas diviation factor  
β = turbulence factor (beta-factor)  
ε = absolute roughness  
ρ = density  
λ = new turbulent flow correlation 
factor  
µ = fluid viscosity  
φ = porosity 
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