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ABSTRACT 
A Windows-based 1-D automatic history matching simulator utilizing the differential 
evolution algorithm–a global optimization algorithm–has been developed. It can be 
applied to calculate oil and water relative permeabilities and dynamic capillary pressure 
simultaneously from unsteady-state immiscible coreflooding data.  The simulator has 
been tested for many cases with very satisfactory results. Detailed descriptions of the 
algorithms used in the simulator and some of the application results are presented in this 
paper. 
 
INTRODUCTION 
The unsteady-state coreflooding technique is widely used to measure water/oil relative 
permeabilities, because it is faster and it is analogous to waterflooding in a reservoir. 
Unlike steady-state measurements, however, interpretation of results from unsteady-state 
coreflooding to retrieve relative permeability is complicated. Direct interpretation with 
JBN method (Johnson et al, 1959) utilizes only the data acquired after breakthrough of 
the displacing phase, limiting the available data to only a few points, especially for 
strongly water wet cases. More often, a “history matching” simulator is used to interpret 
unsteady-state coreflooding tests. History matching uses relative permeabilities and 
capillary pressure as the adjustable input parameters to simulate oil production, saturation 
distribution, and the pressure gradient along the core sample, based on Darcy’s law. The 
simulated results are compared to the experiment measurements and parameters are 
adjusted until a good match is reached. For a complex system such as oil/water two-phase 
flow in a porous medium, manually adjusting these parameters is extremely tedious, 
inefficient, and relies heavily on the expertise of simulation engineers. A better option is 
to use an automatic history matching algorithm in which the computer searches for the 
optimal solution. Mathematically, this can be achieved by minimizing an objective 
function, which takes the difference between simulation output and the experimental 
data. 
  
Traditional automatic history matching algorithms that have been employed in the 
petroleum industry for decades are mainly gradient-based, such as Newton, Gauss-
Newton, and quasi-Newton algorithms. There are two major drawbacks involved in these 
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algorithms.  First, the calculations of gradients of the objective function with respect to 
the multiple adjustable parameters are very costly since these gradients can only be 
approached by numerical differentiations which usually require many simulation runs 
thus consuming lots of computer resources.  Second, for a highly non-linear, complex 
model involving multiple parameters, gradient-based algorithms are inherently prone to 
finding local minima instead of a global minimum. To avoid these problems, heuristic 
global optimization algorithms have been developed for flow simulation, such as 
simulated annealing (Ouenes et al., 1992; Ucan et al., 1993) and genetic algorithms (Sun 
and Kishore, 2003; Tokuda et al., 2004). Although these algorithms largely solved the 
local minima problem, the improvement in convergence speed is less satisfactory.  
 
A recently developed evolutionary global optimization algorithm – the differential 
evolution (DE) algorithm – has been shown to significantly outperform simulated 
annealing and other evolutionary algorithms in many applications (Storn and Price, 
1995). The principle of the algorithm is straightforward and easy to implement, yet it is 
very powerful with respect to the reliability, robustness, and convergence speed. 
Moreover, it uses real numbers for parameter searching, making the incorporation of 
parameter constraints to the algorithm very easy.  In this paper we report the first 
application of a DE algorithm to improve automatic history matching of coreflood data.  
 
DIFFERENTIAL EVOLUTION ALGORITHM 
The DE algorithm was first proposed by Price and Storn in 1995 in their attempt to solve 
the Chebychev polynomial fitting problem. Since then, the algorithm has attracted 
interest from many researchers and has been widely applied to solve a variety of 
problems, including function minimization, non-linear programming, and complex 
simulations (Storn and Price, 1995; Storn, 1995; Storn and Price, 1996; Storn, 1996a; 
Storn, 1996b; Lampinen and Zelinka, 1999; Lampinen, 2001; Karaboga and Okdem, 
2003). As a member in the evolutionary algorithm family, DE is also a population-based, 
stochastic global optimizer. The key innovation of DE, which distinguishes it from other 
evolutionary algorithms, lies in its unique mutation scheme which uses vector differences 
to perturb the vector population to generate new generations.  
 
Suppose we want to minimize an objective function f(X), where X=(x1, x2, …, xD) is a 
vector with D elements (in our case the parameters for relative permeability and capillary 
pressure).  Instead of searching from a single point in the parameter space, DE initializes 
a population of NP points (vectors), Xi

(0), i=1,2,…,NP, which are randomly distributed in 
the D-dimension parameter space. Each individual vector represents a potential solution 
to the problem. The goal of evolutionary algorithms is to find a heuristic method which 
would produce new generations from the initial generation with the expectation that the 
offspring will be better solutions than their ancestors, i.e., solutions more closely 
approaching the global minimum. In DE, the population number NP is fixed from 
generation to generation. The evolutionary schemes employed in the DE algorithm, 
including mutation, crossover, and selection, will be described in the following sections.  
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Mutation 
For each vector Xi

(G) in generation G, i=1,2,..NP, a perturbed vector Vi
(G+1) is constructed 

according to one of the strategies listed in Table-1: 
 
Table-1: different mutation strategies used in DE algorithm  

Strategy ID Perturbed vector 
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where Xr1

(G), Xr2
(G), Xr3

(G), Xr4
(G), Xr5

(G) are randomly selected, mutually different vectors 
from the population of generation G, with r1≠ r2≠ r3≠ r4≠ r5≠ i, and Xbest

(G) is the best 
solution among all the individuals in population G.  F is a mutation scaling factor which 
controls the magnitude of mutation and is kept constant throughout the evolution process.  
λ is a randomly generated factor used in strategy 6, with λ∈[0,1].   
 
Crossover 
The Xi

(G) and Vi
(G+1) from mutation step are combined to reproduce a trial vector 

according to the following scheme (Storn, 1996b): 
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where vi,j

(G+1), j=1,2,…,D, is the j-th element in vector Vi
(G+1), xi,j

(G), j=1,2,…,D, is the j-th 
element in Xi

(G), and ui,j
(G+1), j=1,2,…,D, is the j-th element in the trial vector Ui

(G+1).  
Symbol < >D represents a modulo function with modulus D. n is a randomly chosen 
integer from [1,D].  L is the total number of elements (parameters) in vector Xi

(G) which 
are to exchange with the corresponding segment from vector Vi

(G+1) (crossover).  L is 
drawn from interval [1,D] according to the following pseudo code: 

L=0; 
do { 
 L=L+1; 
} while (rand() < Cr) AND (L<D); 
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Thus, the probability for crossover to occur with L as the exchange length is controlled 
by a crossover factor Cr, as Pr(L≥ν)=Crν-1, for ν>0.  Like the mutation scaling factor F, 
Cr is also maintained constant during the evolutionary process. 
 
Selection 
Unlike other evolutionary algorithms, the selection of individuals to constitute the next 
generation in DE is relatively simple. The fitness between the trial vector Ui

(G+1) and its 
counterpart Xi

(G) are compared.  The better one, i.e. the one with small objective function 
value, will be selected. It enters into the next generation, while the other one is discarded, 
i.e., 
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where Xi

(G+1) , i=1,2,…,NP, is the new vector in the generation G+1.  As a result, all the 
individuals in the next generation (G+1) are at least as good as the current generation (G), 
or better. 
 
Stop Criteria 
The evolution of new generations continues, using the mutation, crossover, and selection 
schemes described above, until a stop criterion is reached. This stop criterion can be 
either 1) when a desired minimum objective function value is reached, or 2) when a 
maximum number of iterations (generations) is reached, or 3) when the maximum 
allowed computer CPU time is reached. To set a lower bound for the objective function 
value is probably not appropriate since the range of the objective function value may not 
be easily determined beforehand.  In the case where CPU time is not a major concern, it 
is practical to set a maximum iteration number as the stop criterion.  Note that the 
objective function value for the best solution in each new generation is either decreasing 
or unchanged, it is also worthwhile to check this value after several iterations and force 
the iteration to stop once this value is no longer decreasing or decreasing very slowly. 
 
DEVELOPMENT OF DE AUTOMATIC HISTORY MATCHING 
SIMULATOR 
Flow Functions 

Relative permeability models 

For a water/oil two-phase flow in porous media, the relative permeabilities can be 
expressed as a function of saturation with the well-known Corey-functions: 
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where Sw is water saturation, Swi is initial water saturation, Sor is residual oil saturation, 
krw,max is the maximum water relative permeability at Sw=1-Sor, and kro,max is the 
maximum oil relative permeability at Sw=Swi. If the base permeability used to calculate 
relative permeability is the oil permeability at Sw=Swi, we have kro,max=1.  All the 
parameters in the right-hand sides of the above equations can be measured from 
experiments, except for the exponents nw and no.  Therefore, the shapes of curves krw-Sw 
and kro-Sw are determined by two unknowns, nw and no. 
 
Although Corey-functions are convenient, in many cases they cannot exactly represent 
the relative permeabilities. A more flexible and accurate way to represent relative 
permeabilities is to use cubic B-spline functions.  Both Corey-functions and B-spline 
functions will be implemented in the design of the automatic history matching simulator.  

 
Capillary pressure model 

Static capillary pressure can be measured experimentally.  Static capillary pressure, 
however, may not represent the in-situ dynamic capillary pressure due to the influence of 
flow rate, possible variations of the wetting properties, and the effects of heterogeneity 
during coreflooding process (Bentsen and Manai, 1991; Bentsen, 1998). It is therefore 
desirable to estimate both relative permeabilities and capillary pressures simultaneously. 
Several different models have been proposed for capillary pressure (e.g., Sun and 
Kishore, 2003; Tokuda et al, 2004), but they used different types of functions to represent 
different wettability conditions, making them difficult to implement.  A novel capillary 
pressure model is proposed in this study, which is very flexible and uses only one 
function to cover any wetting conditions:   
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where pc is capillary pressure, pcmax and pcmin are maximum and minimum capillary 
pressure, respectively, within the saturation range between Swi and 1-Sor, pco is the 
capillary pressure at the point of transition from imbibition curve to drainage curves, 
Swpco is the corresponding water saturation at pco, m+ and m- are exponents for drainage 
curve and imbibition curve, respectively.  All six variables (pcmax, pcmin, pco, Swpco, m+, 
and m-) are adjustable parameters.  
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Objective Function 

The first step in applying DE for automatic parameter searching is to construct an 
appropriate objective function.  In the current situation, we want to match both oil 
recovery curve and pressure drop curve from coreflooding tests. Accordingly, the 
objective function is defined as: 
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where OBJi is the objective function value for a given parameter vector Xi
(G), n is the 

number of sampling points along the oil recovery or pressure drop curve, Rmeas,l is the 
measured oil recovery value at point-l on the curve, Rsim,l is the corresponding oil 
recovery from simulation, ∆pmeas,l is the measured pressure drop at point-l, and ∆psim,l is 
the simulated pressure drop. Since R and ∆p may differ significantly in numerical values, 
the differences between simulation and experiment for both oil recovery and pressure 
drop are normalized by their maximum experimental values, Rmax and ∆pmeas, 
respectively, to give them equal weight. 
 

Simulator Development 
The automatic history matching simulator includes three major modules: a control 
module, a DE module, and a flow simulation module.  The control module is a Windows-
based application, which provides the interfaces for data input/output, graphical display, 
and communications with other two modules. The DE module uses the DE algorithm to 
automatically search for the best parameters (relative permeability and capillary pressure) 
that minimize the objective function. This objective function is evaluated by a 1-D flow 
simulation module, which takes relative permeabilities and capillary pressure provided by 
the DE module as input and simulates the oil recovery and pressure drop history as the 
output using a standard flow simulator described elsewhere (Wang, 1998). Both the DE 
and flow simulation modules were written in Fortran and compiled as dynamic link 
libraries (DLLs). 
  
The parameters required from DE include those in both relative permeability (two 
adjustable parameters for Corey or 10 for B-spline) and capillary pressure (six adjustable 
parameters) models. For the B-spline model, five discrete points for both krw and kro are 
evenly distributed within the saturation range from Sw=Swi to Sw=1-Sor. Thus, the 
parameter vector used in the DE search is constructed as shown in Fig. 1. 

(a)                           2 parameters 6 parameters

Kr Pc

 

(b)         10 parameters 6 parameters

Kr Pc

 
Figure-1: Parameter vectors used in DE automatic search, when relative permeability kr is expressed 

as (a) Corey-function, or (b) cubic B-spline function.  
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Note that all the parameters are used as real numbers, without the binary encoding 
usually required in genetic algorithms. All the parameters are confined within their 
physical ranges. In order to reduce the search time, the initializations of both krw and kro 
are confined to values in the space below the lines connecting their end points.    
 
The most costly step during each DE search is the call to the simulation module. The 
evolution iteration itself, including the mutation, crossover, and selection operations, only 
takes a very small fraction (<5%) of total CPU time. Since there are NP trial vectors 
generated in each generation, and each trial vector needs a call to the simulation module 
to evaluate the objective function, the total number of simulation runs that will be 
executed is 

Number of simulation runs = (Number of total iterations + 1) * NP 
 
CASE STUDY 
Many cases have been conducted to test the performance of this DE-based automatic 
history matching simulator. In general, the simulator can be conveniently applied to 
simulate and match laboratory-measured waterflood production history to a very 
satisfactory level, especially if the B-spline function is used to represent relative 
permeability. Convergence speed is acceptable, ranging from one to several minutes on a 
PC with a Pentium-4 processor (3.0 GHz, 1.0 GB RAM), depending on the matching 
degree required. Results from two selected case studies are included here. 
 
Coreflooding measurements 
Two Berea sandstone core samples were cut from the same block. After establishing the 
initial water saturation (Swi) by a crude oil, the cores were aged at 80°C for two weeks. 
Waterflooding was conducted at room temperature (22°C) with constant injection rate of 
80 cm3/hr.  Both pressure drop across the core plug and the oil recovery were recorded as 
a function of injection brine pore volume (PV). Properties of oil, brine, and core samples 
are listed in Tables 2-3.    
 
Table-2 Properties of Berea sandstone core samples 

Sample Length 
(cm) 

Diameter 
(cm) 

Porosity 
(%) 

KN2
* 

(md) 
Swi 
(%) 

Ko@Swi
** 

(md) 
B35 7.21 3.79 22 803 21 501 
B15 5.73 3.59 22 786 20 483 

  *  KN2: nitrogen permeability;  
**  Ko@Swi:  oil permeability at initial water saturation.  

 
Table-3 Properties of oil and brine at 22°C 

 Density 
(g/cm3) 

Viscosity 
(mPa.s) 

Crude oil 0.83 5.55 
Brine 1.15 1.72 
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Matching results   
Figure-2 shows the oil recovery curve from one case study. It is matched quite well by 
the Corey function from automatic history matching, and almost completely matched by 
the B-spline function under similar conditions.  The pressure drop is matched very well 
with either Corey or B-spline functions (Figure-3).  Another case study is shown in 
Figure-4 (oil recovery) and Figure-5 (pressure drop).  In this case, the B-spline results 
are significantly better than those using the Corey model.   
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Figure-2: Oil recovery from automatic history matching using different kr models (case-1) 
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Figure-3: Pressure drop from automatic history matching using different kr models (case-1) 
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Figure-4: Oil recovery from automatic history matching using different kr models (case-2) 
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Figure-5: Pressure drop from automatic history matching using different kr models (case-2) 

 
Calculated kr and pc  
Figure-6 shows the corresponding relative permeabilities and capillary pressure from 
automatic history matching in case-1.  Although only a slight difference in oil recovery 
was obtained from the two different matches (Figure-2), oil relative permeability (kro), 
water relative permeability (krw), and capillary pressure obtained from the Corey-function 
match are very different from those obtained using a B-spline model.  Similar trends are 
observed in the case-2 study (Figure-7).  It is evident that small deviations from the 
experimental data can have a big influence on the flow functions calculated in the history 
matching process. 
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Figure-6: kr and pc obtained from automatic history matching (case-1). 
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Figure-7: kr and pc obtained from automatic history matching (case-2). 

 
Convergence Speed  
The convergence speed is mainly determined by the size of the population (NP) in the DE 
algorithm, and the functional form chosen for the kr model.  It is also influenced by the 
mutation scaling factor, F, and the crossover factor, Cr.  The suggested values for NP, F, 
and Cr are based on rule of thumb (Storn, 1996b).  NP should be at least 10 times as big 
as the vector length (total number of parameters).  F is usually chosen from [0.5,1].  
Cr∈[0,1] should be considerably lower than 1.  Based on preliminary testing, default 
values of NP=100, F=0.8, and Cr=0.5 were selected, although they can be adjusted.   
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Examination of the OBJ shows that it decreases very rapidly for the first several iterations 
and reaches an equilibrium after about a dozen iterations. The influence of population 
size (NP=100, 160, and 200, were tested) is very small.   
 
In fact, the calculated relative permeabilities after 10 iterations (~ 1.5 minutes) are 
already very close to those obtained after 200 iterations (Figure-8). This was found to be 
true for most cases. Therefore, very satisfactory results can be achieved generally within 
a few minutes, though even better results are available if computing time is not restricted. 
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Figure-8: Effect of number of iterations on kr obtained from automatic history matching. 

  
CONCLUSIONS 
1. A differential evolution algorithm to automate a 1-D history matching simulator has 
been developed for interpretation of relative permeability and dynamic capillary pressure 
from unsteady-state immiscible coreflooding experimental data.  The simulator is robust, 
fast, and easy to use, with only a few control parameters that can be adjusted by the user. 
 
2. Simulated production history can satisfactorily match the experimental measurements.  
The convergence speed is fast, generally within a few minutes with a PC. 
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