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ABSTRACT 
Dissolution and deposition phenomena are key issues in the CO2 geological storage. In 
the past few years, it has been proven that CO2 injection can lead to important pore 
structure modifications which mainly depend on the thermodynamic conditions, the rock 
and fluid composition and the flow regime. Predicting these modifications and their 
impact on the reservoir permeability and porosity is crucial for the success of CO2 
sequestration projects. 

This paper presents an experimental and numerical study to evaluate in a comprehensive 
manner the impact of the deposition regimes on the relationships between permeability 
and porosity. Experiments have been performed in glass micromodels to visualize 
deposition mechanisms for different regimes. A reactive transport model using the pore-
network approach has been developed to simulate the deposition phenomenon in the case 
of a single-phase flow. This numerical model is based on solving the macroscopic 
convection-diffusion equation. Its macroscopic coefficients, mean velocity, dispersion 
coefficient and apparent reaction term, are obtained for each unit cell of the pore network 
by solving analytically a set of equations describing the reactive transport at microscopic 
scale. The regimes that govern the deposition phenomena are numerically investigated. It 
is demonstrated that deposition patterns depend on both scales of the reactive transport, 
microscopic and macroscopic, each one being characterized by relevant dimensionless 
numbers.  

INTRODUCTION 
The CO2 geological storage is considered as a solution to reduce its concentration in the 
atmosphere. Due to the high solubility of CO2 in water and the consequent formation of 
acid solutions, CO2 injection may cause dissolution of limestone and generate calcium 
and carbonate ions. These species may re-precipitate, because of the thermodynamic 
fluctuations inside the reservoir, leading to a decrease of the well injectivity. Reactive 
transport models have been evolved for the quantification of such phenomena. 

Reactive transport, specifically acid dissolution, have been investigated by a large 
number of researchers. In a pioneering work, Schechter and Gidley (1969) developed an 
analytical approach to estimate the effects of surface reactions on petrophysical 
properties. A porous medium was constructed by geometrically similar cylinders, 
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randomly distributed, with different cross-sectional areas. Although they have taken into 
account only the diffusion limited process, it was shown that the largest pores would 
determine dissolution figures because of the higher acid concentration in these pores. 
Since no flow calculations were needed and no connectivity effects were considered, the 
influence of the hydrodynamic regime was not highlighted. More recently, reactive 
transport was solved either at the Darcy scale assuming a continuous porous medium 
(Zhang and Seaton (1994)) or at the microscopic scale in Pore Network Models. In this 
last case, deposition/dissolution modes were often presupposed and reaction locations 
were arbitrarily chosen to fit experimental data (Bhat (1998), Egermann et al. (2005)). 
Besides, when a global modelisation is considered, the source term of the reactive 
convection-dispersion equation is generally taken proportional to the mean concentration 
of the pore only (Christman and Edgar (1983), Rieckmann and Keil (1997)). This 
approach disregards the diffusion phenomenon by assuming that its characteristic time is 
much lower than the reaction time, so that the pore diameter does not play any role. The 
hypothesis seems satisfactory in the case of gaseous species but not for liquids. In the 
present work, diffusion mechanism is taken into account in the apparent reactivity 
coefficient through the set of local equations, so that the mass-transport limited 
phenomena can be studied. 

From an experimental point of view, calcite precipitation has already been studied in 
"open systems" to evaluate kinetic constants (Reddy and Nancollas (1971), Shiraki and 
Brantley (1995), Lebron and Suarez (1996), Euvrard et al. (2004)). Lee et al. (1996) were 
interested in deposition in veins and determined conditions to obtain a uniform 
deposition. Precipitation in a 2D porous medium was not thoroughly investigated. 
However Dawe and Zhang (1997) observed calcium carbonate nucleation at liquid-gas 
interfaces in glass micromodels. Nevertheless, they did not study the deposition 
phenomenon, which consists of solute diffusion coupled with surface reaction. 

The present paper is organized as follows. The first section describes the experimental 
conditions and the first experimental results. The second part is dedicated to the 
description of the reactive pore network model and of the results that are discussed in 
terms of the governing regimes. Finally, conclusions are drawn on the future works to be 
conducted. 

EXPERIMENTS 
Precipitation Mechanisms: State of the Art 
Through this chapter, the choice of the experimental conditions is explained. 

Calcium Carbonate Precipitation 

Different chemical reactions, depending on pH, can result in calcite precipitation. For a 
pH value lower than the logarithm of the acid dissociation constant (pKa) of HCO3

-, 
equal to 10.3 at 25°C, the main precipitation reaction is the following: 
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2233
2 2 COOHCaCOHCOCa ++↔+ −+  (1) 

When pH is higher than 10.3, the precipitation reaction is simply the reverse of the 
solubilisation: 

3
2
3

2 CaCOCOCa ↔+ −+

 (2) 

The production of carbon dioxide, which may result in the creation of a gaseous phase at 
ambient conditions, can complicate the experimental interpretations. For this reason, the 
second reaction is chosen and pH is set at 13 in all the experiments performed in this 
study. 

Precipitation Mechanisms 

Whatever the reaction, precipitation can occur according to four main mechanisms 
(Shiraki and Brantley (1995)): homogeneous or heterogeneous nucleation, seed growth 
by surface adsorption and spiral growth at dislocations. The above mechanisms start only 
if the available energy overcomes the energetic barriers. These energies are usually 
expressed in terms of saturation ratio, which is a measure of the thermodynamic 
disequilibrium. Indeed, Gibbs energy liberated during the reaction, ∆G, and the saturation 
ratio, noted S, are interrelated: 

( ) ( )
sK
COaCaa

S
−+

=
2
3

2

       and            ⎟
⎠
⎞

⎜
⎝
⎛ ∆

=
RT

GS exp  (3) 

where ( )ia  is the activity of ion i, Ks is the solubility product of calcium carbonate, T the 
temperature and R the perfect gas constant. 

If S is greater than unity, the solution is supersaturated but may be metastable. Actually 
precipitation will begin only if some nuclei are present or if the supersaturation is high 
enough so that nucleation occurs. The critical saturation ratio has been estimated at 40 for 
spontaneous homogeneous nucleation (Ghizellaoui et al. (2004)) and at 2.5 for 
heterogeneous nucleation (Lebron and Suarez (1996)). Heterogeneous nucleation needs 
much less energy because it occurs in places of high free surface energy: mainly at wall 
asperities. It must be specified that the above values vary with temperature or 
concentration of some inhibitors such as magnesium or organic carbon. The distinction 
between calcite growth modes depends also on supersaturation. For lower 
supersaturations, precipitation is controlled by growth at dislocations, whereas it is 
governed by simultaneous adsorption of Ca2+ and CO3

2- onto the seed surface when S is 
higher (Shiraki and Brantley (1995)). 

Since the reactive transport model has been developed with a kinetic law valid for 
adsorption, it has been decided to carry out the experiments at the highest available 
saturation ratio without bulk nucleation occurring. Otherwise, either the experimental 
time is unreasonably long or the precipitation mechanism is not similar to a deposition. 
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As no significant bulk nucleation was noticed for a saturation ratio equal to 75, this value 
has been adopted instead of 40. 

Kinetics 

For precipitation by adsorption, the reactive flux per unit surface, φ, is proportional to the 
thermodynamic disequilibrium (S-1) evaluated at the wall (Shiraki and Brantley (1995) :  

( )1−⋅= wallSkϕ  (4) 

where k is the intrinsic rate constant. According to Shiraki and Brantley (1995), k is equal 
to 2.3x10-5 mol.m-2.s-1, whereas k is equal to 6.5x10-3 mol.m-2.s-1 according to Lebron and 
Suarez (1996). These differences can be attributed to the difficulty in proposing an 
intrinsic rate constant, since only global kinetic constants, including both transport 
towards the wall and reaction, are measured experimentally (Teng et al. (2000)). 

By expressing this constant in units consistent with first-order kinetics, a mean value of 
8x10-4 m.s-1 at ambient temperature conditions can be derived from the linearization near 
equilibrium of equation (4) for equimolar solutions. 

Experimental Procedure 
The glass micromodel used has a length of 18.5 cm and a width of 3.5 cm. Both of its 
faces are etched. The 2D network is composed of different diameter cylinders oriented 
45° to the main flow direction. The mean pore-throat diameter is 0.1 mm.  

The glass micromodel is initially cleaned under vacuum with sulfochromic acid in order 
to remove organic matter which can inhibit calcite-glass adhesion or decrease calcite 
growth (Lebron and Suarez (1996)). As deposition cannot begin directly on glass because 
of repulsive interactions, the second step consists of obtaining a uniform pre-layer of 
calcite. In this aim, temperature elevation, to decrease calcite solubility, and evaporation 
have been tested. However in a closed medium, when temperature is increasing (CO2 
solubility decreases) or solution is evaporating, the creation of bubbles is responsible for 
the drainage of the solution. Consequently deposition cannot be uniform. It was therefore 
decided to investigate a third method by depositing nuclei as homogeneously as possible. 
Very high theoretical supersaturation is needed so that spontaneous nucleation is 
predominant compared to crystal growth and to obtain numerous small particles (Euvrard 
et al. (2004)). To get a high supersaturation, two concentrated solutions, respectively in 
Ca2+ and CO3

2-, must be used. A mixture of calcium dichloride (0.1M, 50vol.%) and 
sodium carbonate (0.1M, 50vol.%) is injected for three minutes at very high flow rate 
(200 ml.h-1). It must be noted that the injection time is chosen to have a tight deposition 
and to avoid pore-clogging by filtration. The third step consists of obtaining the mixture 
required to study deposition. Since its supersaturation value is set at 75, the same 
solutions as previously, but a hundred times less concentrated (0.001M), are prepared. 
Finally, the solutions are injected simultaneously by using two pumps or by gravity flow, 
according to the desired flow rates. The solutions get mixed just at the inlet of the 
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micromodel in order to prevent precipitation in tubings or containers. During the 
experiments, carried out at laboratory temperature (around 20°C), image acquisition can 
be performed thanks to a binocular microscope. 

Figure 1. Schematic of experimental 
device. 

Experimental Results 
The experimental results obtained must be discussed in terms of dimensionless 
parameters governing the reactive transport phenomenon at local scale: Peclet-
Damköhker (PeDa) and Peclet numbers (Pe). The first one compares reactive fluxes with 
diffusive ones while the second number is the ratio between convective and diffusive 
fluxes.  

D
klPeDa =                      

D
vlPe =       (5) 

with l a characteristic length at the microscopic scale, D the molecular diffusion 
coefficient and v the mean interstitial velocity. According to earlier publications (Daccord 
et al. (1993), Bekri et al. (1997)), different dissolution patterns are observed depending 
on these numbers: a uniform dissolution for small PeDa, a dissolution along the main 
flow path for large PeDa and large Pe, and a compact dissolution at inlet or in large 
cavities for large PeDa and small Pe. As dissolution and deposition are similar in terms 
of reactive transport, this summary classification is relevant for deposition. 

To check this classification, two experiments have been carried out at a fixed PeDa 
number but with two different Pe values. The PeDa number is estimated equal to 100, 
considering that the diffusion coefficient D is equal to 8.10-10 m2.s-1 (intermediate value 
between the coefficients of Ca2+ and CO3

2-), L is equal to the mean pore-throat diameter, 
i.e. to 10-4 m, and k to 8.10-4 m.s-1

.  Therefore, according to this PeDa value, the 
deposition pattern will depend on the flow rate. In the first experiment, the injection rate 
is imposed at a value of 20 ml.h-1, which corresponds to a mean velocity of 2 cm.s-1 and a 
Peclet number of about 2000. One can see on Figure 2 that deposition mainly occurs in 
flow paths, created by some pore clogging during nuclei deposition. Some of these calcite 
clusters are visible at the right of picture (b). In the pathway, the deposition layers are of 
the same thickness in the inlet and outlet zones of the micromodel, which confirms that 
convection flux is high enough to homogenise the solute concentration in the flow 
direction. Furthermore, the deposit seems thicker in channels than in pores, which reveals 
a potential role of the solute transport at the pore scale. The second experiment has been 
performed at a Pe value decreased to 10. The time optimization of the solute renewal 

glass micromodel 

CaCl2 image 
acquisition 

Na2CO3 
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required not to work with a smaller Peclet number. Despite this intermediate value, the 
flow regime is different enough to generate another deposition pattern, which looks more 
like a compact deposition. One can see actually on Figure 3 that deposition is visible 
primarily in inlet zone (3.a). Deposition occurs in a limited area, where the concentration 
is high, due to rapid solute consumption with respect to convection characteristic time. 

The experiments are globally explained by the classification cited above, but some 
divergences lie in the transition values between the regimes. For instance, it appears that 
the local Peclet number does not clearly govern the deposition pattern. In fact, this 
classification is employed for the description of the reactive transport at the pore scale. In 
our experiments, which are interpreted at the upper scale, the macroscopic contribution 
must be taken into account. This macroscopic effect will be detailed in the next part.  

    
Figure 2. Pictures of calcite deposition for high PeDa and high Pe. Pictures (a) and (b) 
are from flow path area and dead zones of the micromodel, respectively. 
 

               
Figure 3. Pictures of calcite deposition for high PeDa and intermediate Pe. Pictures (a) 
and (b) are from the inlet and outlet zones of the micromodel, respectively. 

REACTIVE PORE NETWORK MODEL 
This section is dedicated to the modelling of the reactive-transport phenomena using the 
pore network approach. A reactive pore network model based on the macroscopic 
convection-diffusion equation has been developed to determine the evolutions of the 
permeability and the porosity caused by dissolution or deposition reactions. The 
determination of these constitutive laws (K-Φ relationships), for various governing flow 
and reaction regimes, is a key issue to improve the predictivity of CO2 injection 
simulations. 

b

a b

a 
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mean flow 
direction 
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Reactive transport 

The detailed description of the pore network model (PNM) in terms of approach, model 
characteristics and construction can be found elsewhere (Laroche and Vizika (2005)). 
The network consists of a 3D cubic lattice composed of pore-bodies (nodes) 
interconnected by pore-throats (bonds) respecting the converging-diverging nature of the 
pores. 

At macroscopic scale, the reactive-transport phenomenon is governed by the convection-
diffusion equation below (Shapiro and Brenner (1988), Bekri et al. (1995)): 

( ) 0* =−∇−⋅∇+
∂
∂ ccc

t
c γ** Dv  (6) 

where c  is the average concentration in pore-bodies or pore-throats, *v the mean solute 
velocity vector, *D the dispersive tensor and *γ the apparent reactivity coefficient. 

The characteristic time of the reaction is assumed to be small compared to the time 
needed for the velocity field to fully develop. In other words, thermodynamic 
disequilibrium is considered small, so that deformation due to reaction is very slow and 
the no-slip condition at the wall becomes a zero-velocity condition when solving the flow 
equations. With this quasi-static assumption, the concentration evolution can be 
expressed using only the first eigenvalue of the equation (6). The other exponential 
functions of the linear combination are perturbations which disappear at long times, i.e. at 
quasi-static state. Consequently, the concentration distribution obeys to a relaxation 
phenomenon, whose frequency is noted Γ.  Therefore, the reactive transport equation 
becomes: 

  ( ) 0* =−∇−∇+Γ− cccc γ** Dv     with    ( )tcc Γ−= exp~  (7) 

When adimensionalizing this equation, two dimensionless numbers, Pe* and PeDa*, 
governing the evolution and the distribution of the macroscopic concentration c , show 
up: 

〉〈
〉〈

= *

*
*

D
LvPe                  and                 

〉〈
〉〈

= *

2*
*

D
LPeDa γ  (8) 

where L is a characteristic length at the macroscopic scale and <> is the average operator 
on the whole network.  

Determination of the macroscopic coefficients 
In order to solve the reactive convection-diffusion equation (7), the three macroscopic 
coefficients *v , *D  and *γ  have to be determined for each pore-throat and pore-body of 
the network, as for the hydraulic conductivity in the classical PNM approach. They can 
be defined using the three first spatial moments (Shapiro and Brenner (1988)): 
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dt
dM
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* 1
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dt
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⎟
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⎞

⎜
⎜

⎝

⎛
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⎠

⎞
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⎝

⎛
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2

002
1

MMdt
d 12* MM

D ;  rrM 3dc i
i ∫=  (9) 

where c is the local concentration and r is the spatial position in the pore. This local 
concentration and thus the three macroscopic coefficients are obtained by solving the 
local equations governing the reactive-transport phenomena at pore scale. The local set is 
composed of three equations for the local flow velocity (10), one convection-diffusion 
equation for the determination of the concentration profile (11), and one boundary 
condition at the wall taking into account a first-order surface reaction (12). The 
description of these equations is given in more detail in (Bekri et al. (1995)).  

v′∇′=′∇′ 2P               0. =′∇ v               0v =′wall  (10)

0.
2

2 =′⋅⋅+′∇′′⋅−′∇′ c
D
LcPec γv  (11)

( )
td
ldcPeDac wallwall ′
′

−=′⋅−=⋅′∇′ n  (12)

According to equations (9), the apparent reactivity coefficient *γ is related to the local 
frequency γ, which is equal to the first eigenvalue of equations (11) and (12) at quasi-
static state. Consequently, PeDa* (8) and PeDa are not independent, since *γ is linked to 
this last one through γ. For the well-defined geometries used in PNM, such as capillary 
tubes or spheres, the local equations (10), (11) and (12) can be solved semi-analytically 
and *γ  can be given explicitly as function of PeDa (Table 1). It must be noted that no 
empirical laws on global dissolution/deposition process are needed to estimate this 
coefficient. Although the attention has been focused on the apparent reactivity coefficient 
in this work, the same type of calculation can be used for the determination of *v and *D . 

Table 1. Formula of the reactive transport at the pore scale for capillaries and spheres. 
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Numerical scheme 
The deposition/dissolution process is analysed as follows (Figure 4). For a given initial 
rock structure, the flow field is determined by solving the linear system of Poiseuille type 
equations using the classical pore network approach (step 1). Then, the macroscopic 
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convection-diffusion equation (7) can be solved (step 2) by a finite-difference scheme 
and a Newton-Raphson iterative process, in order to obtain the reactive fluxes and the 
motion of the fluid-solid interface (step 3). Then the rock structure is updated by 
modifying the pore-throats and pore-bodies diameters according to the 
deposition/dissolution fluxes (step 4). This process can be iterated (step 5) and any 
quantity of interest, such as permeability and porosity, can be calculated. Note that 
sometimes the computations cannot be done to the point of total pore clogging because of 
the appearance of numerical instabilities. 

Figure 4.  

General scheme 
of the reactive 

transport in 
PNM 

 

Numerical results and discussion 
Several simulations have been performed with a periodic 10x10 2D network, in which a 
central main flow path, composed of large pores, has been designed (Figure 5). It appears 
that both scales of reactive transport, macroscopic and microscopic, must be considered 
to explain the deposition patterns: 

- at the macroscopic scale, Pe* and PeDa* (8) control the concentration field and thus 
the macroscopic chemical disequilibrium at the origin of the deposition phenomenon. 
More precisely, the governing number is the following ratio, which compares 
apparent reactive fluxes with convective and dispersive ones. 

1*

*

+
=

Pe
PeDaβ  (13)

- at the microscopic scale, the deposition rate for a given macroscopic concentration 
is function of local Pe and PeDa (5). For the considered pore-throat and pore-bodies 
geometries of our model, microscopic reactive transport depends on PeDa only. 

Thus the different dissolution/deposition regimes and their respective impacts on 
permeability and porosity can be classified according to β and PeDa. 
When β is higher than one, the deposition regime is macroscopic-transport-limited, also 
called convection-limited by Daccord et al. (1993), who disregarded diffusion. As 
transport fluxes are too low to homogenize solute concentration at the network scale, c  is 
higher in big pores. Indeed, these ones have the lowest specific area, so that the solute 
consumption by surface reaction seems globally less important in these volumes. 
Consequently, as the deposition - proportional to the chemical disequilibrium - occurs 

Determination of concentration field at 
quasi-static state by a Newton-Raphson 

Calculation of deposition/dissolution 

End YesNo

Initial structure

Updating of the geometry

Calculation of the flow field 
Calculation of permeability and porosity

Map for vizualisation 
K-Φ relation data 
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step 1

step 2

step 3 

step 4
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principally in the big pores (Figure 5.a), a big porosity decrease, with respect to the 
permeability one, is observed (Figure 6.a).  
When β is lower than one, the regime is apparent-reaction-limited. In this case, the 
macroscopic concentration tends to be uniform and the differences in deposit are 
explained by the reactive transport at the microscopic scale. If PeDa is smaller than unity, 
kinetics is surface reaction controlled so that geometry does not play any role. The 
deposition is therefore uniform (Figure 5.b). However, as diameters decrease relatively 
faster in restrictions than in pores and as permeability is function of pore-throat 
dimensions, the permeability decrease is more pronounced than the porosity one (Figure 
6.b). For PeDa greater than one, i.e. if kinetics is limited by diffusion, the deposit is 
thicker in restrictions (Figure 5.c), for which the microscopic transport towards the wall 
is faster (Bekri et al. (1995)). So the permeability decrease is more accentuated than 
previously (Figure 6.c). 
For intermediate values of β, the concentration is roughly uniform in the main flow path 
only. Therefore deposition cannot occur elsewhere than along this pathway, with a 
preference for restrictions if PeDa is higher than one (Figure 5.d). For dissolution, this 
case is close to the wormholing phenomenon described in the literature. 

If comparing this classification with our experiments, one can note the exact similitude 
between the first test (high Pe and high PeDa) and the corresponding simulated regime 
(low β and high PeDa). β has been estimated by considering that PeDa* and Pe* are equal 
to PeDa and Pe respectively. Calcite has preferentially been deposited in pore-throats, at 
inlet as much as at outlet, revealing the predicted uniformity of macroscopic 
concentration. The second experiment would correspond to the case where β and PeDa 
are high. One can observe a restricted high concentrated area, but at the micromodel inlet 
and not in the big pores. This confirms however that deposition pattern is explained by 
the concentration spatial distribution controlled by β. The modification of the main 
deposition location is simply linked to different boundary conditions: in the experiment, 
solute is renewed at the inlet, contrary to the simulation where classical periodic 
boundary conditions are used. In this last case, solute remains in big pores at quasi-static 
state, which explains the obtained deposition pattern. 
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PeDa = 100 

Pe* = 0 
 

β = 0.001 

PeDa = 0.001 

Pe* = 1000 

(a) deposition in big pores (b) uniform deposition 

 

β = 0.4 

PeDa = 100 

Pe* = 1000 
 

β = 0.004 

PeDa = 100 

Pe* = 105 

(d) deposition in main flow paths (c) deposition in restrictions 

Figure 5.  Deposition maps for different reactive regimes 
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Figure 6. Permeability versus porosity relations for different β and PeDa. 

CONCLUSIONS 
A reactive transport model using the Pore Network approach has been developed to 
simulate the modifications of the pore structure and the evolution of the petrophysical 
properties of the medium. It is based on the resolution of the reactive convection-
dispersion equation at the network scale. For the basic geometries used in PNM, the 
apparent reactivity coefficient *γ of this equation is estimated using semi-analytical 
relations based on the physical description of the reactive phenomenon at the pore scale. 
Simulations have shown that deposition patterns can only be explained by taking into 
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account both scales of reactive transport. At each scale, the contribution of reactive fluxes 
with respect to transport fluxes must be evaluated through a dimensionless number: PeDa 
at microscopic scale and β=PeDa*/(1+Pe*) at macroscopic scale. These numbers permit 
to establish a classification of the deposition regimes in agreement with the ones found in 
the literature. Experimentally the two deposition regimes described in the literature at 
high PeDa have been observed in a glass micromodel. In future works, experiments will 
be carried out at low PeDa. Modelling must be also extended to the two other 
macroscopic coefficients of the reactive equation: the mean solute velocity and the 
dispersive tensor. Finally other simulations should be performed on a representative 
network of a real porous medium in order to confirm the reactive transport classification 
exposed in this paper. 

NOMENCLATURE 
 
Latin Letters 
a(i) activity of i-species Pe microscopic Peclet number 
c concentration Pe* macroscopic Peclet number 
D molecular diffusion coefficient (m2.s-1) PeDa microscopic Peclet-Damköhler number  
D* solute dispersion tensor (m2.s-1) PeDa* macroscopic Peclet-Damköhler number  
k intrinsic kinetic rate (m.s-1) R radius  (m) 
K permeability (m²) S saturation ratio 
Ks solubility product t time (s) 
L macroscopic characteristic length (m) v  fluid velocity vector (m.s-1) 
l microscopic characteristic length (m) *v  solute velocity vector (m.s-1) 

Greek Letters 
 β macroscopic reactive transport governing ratio *γ  apparent reactivity coefficient (s-1) 
 Γ relaxation frequency at network scale (s-1) Φ porosity 
 γ relaxation frequency at pore scale (s-1)  φ reactive flux per unit surface (m².s-1) 

Subscript and superscript 
' dimensionless values - mean value at pore or at restriction 
wall value evaluated at wall position <> average operator on the whole network 
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