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ABSTRACT  
Fluid flow in, and the thermal, electrical, and acoustic properties of porous media are 
determined primarily by the geometry and topology of the pore system. Here we illustrate a 
stochastic 3D space reconstruction model that uses thin section images as its main input. 
The approach involves a third-order Markov mesh that creates the reconstruction in a 
single scan; and overcomes the computational issues normally associated with Markov 
chain methods. The technique is capable of generating realistic “pore architecture models” 
(PAMs), and examples are presented for a range of fairly homogenous rock samples. 
PAMs, or tomography models, serve as input for another suite of analysis techniques that 
we call pore analysis tools (PATs). PATs allow us to quantify important characteristics of 
the pore system, such as the pore-size distribution, and the pore connectivity. Using PATs, 
we are able to extract well-characterized network models that can be used for simulating 
two- and three-phase fluid flow. The aim of this paper is to explore how we can use 
PAMs/PATs to gain additional understanding of the characteristics of porous media which 
contain multiple scales of pores. When such materials possess pore systems that have an 
extreme range of pore sizes, we are able to overcome (to some extent) the difficulties of the 
multiple scales by creating and analysing multiple reconstructions based on 
different-resolution input images.   
 
1. INTRODUCTION 
Quantitative characterisation of porous media at the pore scale is of fundamental 
importance in many scientific subjects. The pore structure of reservoir rocks is complex, 
but the geometry and topology of porous rocks must be known if we wish to a priori 
predict physical rock properties. The pore geometry ultimately affects many macroscopic 
phenomena associated with mechanical, acoustic and fluid flow properties.  
 
Previous attempts to quantitatively characterise the microstructure adopt the conventional 
paradigm of “pore bodies” linked by smaller connections or “pore throats”. In realistic 
porous media, fluid flow at the pore scale occurs within a complex three-dimensional (3D) 
network of pores. Typically, the pore network is an interconnected three-dimensional array 
of void spaces (e.g. in rocks, inter-granular porosity, fracture apertures, moldic porosity, 
etc) that can be characterised by geometrical quantities (pore size or volume, pore shape) 
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and topological descriptors (pore connectivity). Progress in studying transport through 
heterogeneous porous media has been hampered by the difficulties involved in 
characterizing the complex microstructure of the pore system of real materials. There is a 
lack of effective and efficient methods to generate models of the complex microstructures, 
due to difficulties in analysing the precise geometry and topology of the pore system. 
 
Although direct measurements of a 3D microstructure are now available via synchrotron 
X-ray computed microtomography (Dunsmoir et al., 1991; Spanne et al., 1994; Hazlett, 
1995, Ans et al., 2001), it is often difficult and expensive to obtain reliable “images” of the 
3D pore structure. Such methods are also limited in terms of their scale of resolution, and 
there is a trade-off between resolution and sample size, which in turn relates to sample 
representativity.  There are several techniques have been proposed to statistically generate 
3D pore structures from spatial information derived from such 2D images (Joshi, 1974; 
Quiblier, 1984; Roberts, 1997; Hazlett, 1997; Yeong and Torquato, 1998; Manswart and 
Hilfer, 1998). Recent quantitative comparisons of these models with tomographic images 
of sedimentary rocks have shown that statistical reconstructions may differ significantly 
from the original sample in their geometric connectivity (Hazlett, 1997; Biswal et al., 1999; 
Manswart et al., 2000). In a different approach to the stochastic generation of 3D pore 
structures, Bakke and Øren (1997) have developed a process-based reconstruction 
procedure, which directly models the particle sedimentation process and was applied to 
reconstruct Fontainebleau sandstone, but this method involves intensive computing. This 
paper outlines a new reconstruction method that belongs to the class of stochastic pore 
space modelling. The new method creates reconstructions of a heterogeneous (possibly) 
porous medium using Markov Chain Monte Carlo (MCMC) simulation. It considers 
spatial structure information (derived from 2D or 3D sample data – specifically, thin 
section data in the x, y and z planes) that identifies all the transition probabilities between 
the voids and solids of the medium for a given local training lattice stencil. The input data 
is taken from image analysis, but our approach differs in one very important respect from 
published two-point (or multi-point) correlation methods (e.g. Okabe and Blunt, 2004). 
The method that we have developed involves a multiple-voxel interaction scheme (a 
high-order neighborhood system) to generate individual realisations that have structure 
characteristics matching the input data. This MCMC reconstruction approach and the 
models it generates are referred to as “pore architecture models”, or PAMs. 
 
Due to the complex morphology of naturally occurring pore systems, another approach is 
to ignore the detailed structure of the porous medium and simply to represent the 
microstructure by an interconnected network based on the assumption that larger pores 
(pore bodies) are connected by smaller pores (throats) (Fatt, 1956; Øren and Pinczewski, 
1992; Blunt et al., 1995; Mani and Mohanty, 1998; van Dijke and Sorbie 2002). The most 
difficult task in creating such a network is identifying and specifying the coordination 
number and the size distributions for pore bodies and pore throats. The second task of this 
work is to develop efficient and accurate algorithms for mapping the pore geometry and 
topology of porous media both for directly scanned images (e.g. from micro CT scans) and 
for simulated images, e.g. generated using pore architecture models, PAMs (Wu et al 
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2006), or other approaches. In addition to the reconstruction method to produce the PAMs, 
we have also developed a set of tools – referred to as “pore analysis tools” or PATs – to 
quantitatively analyse the geometry and topology of the pore system of the reconstructed 
material. In this paper, we additionally set out to: (i) develop an approach to link 
quantifiable measures of porous media to an accurate mapping of the pore morphology; (ii) 
develop a methodology for using detailed information on pore morphology as an input to 
an invasion percolation simulator, and to compare its results with experimental data; and 
(iii) investigate quantitative methods for the characterization of pore connectivity and 
topology. 
 
This paper describes a new approach to make predictions of the transport characteristics of 
porous media that possess multiple-scales of pore systems. Our approach is to numerically 
reconstruct the pore space of each scale of pore system from appropriately-imaged thin 
section. The model at each scale can then be used to predict the flow response for that part 
of the medium. We illustrate the value of this scheme by calculating the mercury-injection 
response of a siltstone. 
 
2. RECONSTRUCTION  
The concept underpinning the PAMs method originates from image processing research, 
where Markov Random Fields (MRFs) are widely used (Geman and Geman, 1984). MRF 
theory is based on using only a small number of local conditions to predict global features 
based on training images. In other words, it considers the interaction (or dependence) of a 
few local neighbours, and some other geometrical descriptors, to generalise the overall 
morphological features of the image. In typical usage, the image is pixelated, and the 
probability of each pixel of the model being in a particular state (black or white, for 
example) is determined (or conditioned) by means of a transition matrix of conditional 
probabilities that is determined from the training (prior) image. The key point here is that 
the PAM reconstruction method is based on a small template that embodies the 
probabilities that are used to make the reconstruction. The multi-point statistics scheme 
(Okabe and Blunt 2004) also uses small templates, but in those methods, the probabilities 
of all possible templates must be determined, and the resulting method is computationally 
expensive. The details of the PAMs method are described in Wu et al (2006). 
  
We have applied the PAMs approach to a wide range of rocks and soils, encompassing 
perhaps 100-150 different materials to date. Here we describe the results for a variety of 
rock types, ranging from coarse sandstone to a very fine mudrock (Fig. 1; Table 1), to 
illustrate the capability of the new modelling approach. The measured permeability of 
these materials ranges over more than six orders of magnitude. In this paper, the emphasis 
is put on multi-scale heterogeneous rock images, in which case the rock has distinctive 
macropores (pore size in millimetres) and micropores (pore size in micrometers or 
submicron) systems, such as carbonate and siltstone. We obtained thin section images 
under different microscope magnifications. Then, our 3D Markov random field models 
were used to reconstruct a representative system at each scale in 3D based on these input 
images. 
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The reconstruction proves to be relatively simple for the case of typical reservoir 
sandstones. The challenges arise when we consider the more difficult rocks, such as 
carbonates, deformed rocks, siltstone etc. The main reasons are that the pore system in 
these rocks has multi-scale features, e.g. macropores and micropores coexist, therefore 
multi scaled images have to be involved. The micro pore can be mapped in a fine scale 
(submicron) image, while coarse resolution images have to be used to handle the macro 
pore and fracture in a relatively large size frame. Because of computer memory limitations, 
we can only deal with small volume of 3D image (perhaps to 500^3 voxels). If the model 
has macropores, then in a high resolution reconstruction, there would be only a few 
scattered large pores which would dominate. For example in Fig 1f, the reconstructed cube 
is 300x300x300 in volume of voxels and the resolution is 1 voxel = 0.14 microns. If we 
have microspores, say at 28 micron in diameter in the cube, then the single pore will take 
up about 214^3 voxels -70 % of the volume of the cube. In addition, the transition 
probabilities, derived from the training image, would not properly represent the micropores. 
To overcome this problem, we sub-sample a small part of the training image at high 
resolution, focusing on the smaller pores, i.e. the high resolution training image does not 
contain any complete big (macro) pores), and we reconstruct a separate model that gives a 
good representation of the micropore system.  
 
 
Table 1. Characteristics of reconstructions and simulated permeabilities 

Sample Type Image size (mm2) 
and pixel size (µm) 

Porosity 
(%) 

Measured 
permeability (mD) 

Simulated 
permeability (mD)

a Sandstone 3.0 x 1.9 
4.0 27.17 2500 2236 

b Deformed rock 1.30 x 0.92 
1.0 18 82.1 71.5 

c Sandstone with 
sheer band 

3.0 x 1.9 
4.0 21.8 NA 76 

d Mudstone 0.490 x 0.365 
0.6 11.73 0.013 0.024 

e Siltstone 0.40 x 0.30 
1.0 14 NA 13 

f Siltstone 0.140 x 0.120 
0.14 20 NA 5.4 

g Carbonate rock 1.20 x 0.90 
1.33 17 NA 11.53 

h Carbonate rock 0.25 x 0.20 
0.28 20 NA 0.42 
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The sample image sizes are listed in Table 1 and reconstructions are presented in Figure 1. 
Multi-scale reconstruction is illustrated via samples e-h. Sample e is a micron scale 
siltstone image, and sample f is a submicron siltstone image, while sample g is a micron 
scale carbonate image, and sample h is a submicron carbonate image. For each of these 
samples only one thin section was available and we assumed that the sections were 
statistically the same in the remaining perpendicular directions. Visually, the agreement 
between the sections and the PAMs is good (Fig. 1). However, more detailed comparisons 
between the images and the reconstructions will be carried out in Sections 3.5 and 4. 
Comparison of the sections and the PAM shows, for example, that the morphology and size 
of the void spaces have been qualitatively reproduced. 
 
 

 
Figure 1.    Simulations of various rocks with the corresponding thin sections, for samples a to h as 
detailed in Table 1 (black indicates pore space). 
 
3. PORE SYSTEM CHARACTERISATION 
When a 3D model of the medium (e.g. a 3D tomographic reconstruction, or a PAM) exists, 
it is necessary to extract the geometry of the pore system using one of several published 
methods (e.g. Øren et al., 2002; Liang et al., 2000; Silin et al., 2003; Lindquist 2000). In 
the work reported here, we use an approach that is described in Jiang et al. (2007). In brief, 
the determination of pore-system characteristics can take one of two approaches: one seeks 
to fit pore elements (typically spheres or balls) into the pore-space model, keeping track of 

Sample2 Sample3 

Sample5 

Sample4 Sample1Image  

(a)  

Sample7 Sample6 Sample8 

(b) (c) (d)  

(e)  (f) (g) (h)  
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sizes, positions, and then constructing the connectivity. The other seeks to extract a 
backbone or network that follows the connections, with pore bodies added to that network. 
The “ball-fitting” idea is the basis for the method that we use below. Our non overlapping 
method to partition the pore space into sphere-equivalent components overcomes most of 
the shortcomings discussed above. In addition, many pore-scale geometrical and 
topological properties can be easily calculated based on this partitioning, such as pore size 
distribution, coordination number and Euler characteristic. We have also developed an 
improved scheme based on the combination of “ball-fitting” and “backbone” approach, 
which is described in Jiang et al (submitted). 
 
Although we will not describe all details of the ball-fitting method, it is worth reviewing a 
few key concepts that highlight why it is not trivial to characterise the pore system. Due to 
the complex microstructure and irregular void space shapes within porous medium, an 
accurate definition of a “pore” is difficult. Dullien (1992) presented the concept of “pore 
neck” based on the minima in the mean radius of curvature (or hydraulic radius). Further 
work along similar lines to determine pore space characteristics has been carried out by 
subsequent workers (Kwiecien 1990, Zhao et al 1993). Zhao et al (1993) pointed out that 
many pore necks will be missed when using this approach, while other regions can be 
mislabelled as necks unless the search for narrowing in the sections is performed in a 
sufficient number of orientations with respect to the image data set. Callaghan (1991) 
pointed out that other methods associated with particular geometrical models also had 
some serious limitations. In our work, we have adapted a widely used sphere-fitting (or ball 
fitting) method and combined it with a non-overlapping restriction. The general idea of this 
algorithm is to fit and extract each pore from the pore space in descending order of pore 
radius before handling any other smaller pores.  
 
3.1 Pore-size quantification using sphere-fitting method 
To measure pore sizes equivalent to the maximum ball size, template spheres are required, 
as illustrated in Figure 2. In our fitting algorithm, pores are extracted step by step from the 
corresponding 3D image of the porous medium such that the larger pores are extracted 
before the smaller ones. Based on the relationship between porosity and pore size (Mulder, 
1996), the largest possible pore radius can be estimated using the expression:  

                              (2) 
where Mr is the upper-limit radius of a largest sphere, φ is the porosity and ν the volume of 
the image. In our algorithm, the sphere of radius Mr is first used in an attempt to fit it into 
the pore space, then successively smaller template spheres are used, until all pore space are 
occupied.    

   
          (a)                   (b)                
Figure 2   The template discrete spheres. (a), (b): spheres of radius 1, 2 respectively. 
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When a pore has been identified through the process described above, we use the cubic 
cutting method to remove it from the pore space to avoid overlapping with pores extracted 
later in the procedure (Figure 3).  
 

  
               (a)                            (b)                          (c)                            
Figure 3  Pore extraction processes. (a) full fitting with sphere B(p,r-1), (b) 95% fitting sphere B(p,r), 
(c) correspond to the subsequent cubic cutting  
 

After all pores of size larger than zero have been extracted from the 3D pore space, there 
exist some remaining voxels that belong to none of the pore bodies (radius≥1) already 
identified. Our algorithm connects the dead-end smaller pores with larger pores (Fig. 4), 
and merges boundary voxels with the larger adjacent pore body.

      
 (a)              (b)                (c)                            (d)                       (e)                         (f)  
Figure 4.  Merging smaller pores and remaining voxels. (a), (b) and (c) are remaining voxels with 
radius <1. (d) small pores contribute as pore throat (blue) should be left. (e) Smaller dead end pores 
(red) which have only one neighbour (grey) of larger size can be merged. (f)  Smaller pores (red) next 
to larger pore can be combined with the larger pore on the left  
 

  
Figure 5. Illustration of pore size distribution curve  
 

As an example, we illustrate the results of the sphere-fitting method by applying it to the 
two separate scales of both the siltstone and carbonate samples. The resulting pore-size 
distributions clearly show the effects associated with image resolution (Fig. 5). The 
higher-resolution models (submicron scale PAM) indicate an average pore-size diameter 
of approximately 0.6µm in siltstone and 0.8 µm in carbonate. In contrast, the 
coarse-resolution models (micron scale PAM) show a much larger mode for the pore sizes, 
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in which the siltstone has an average pore-size diameter of about 2.5 µm and the carbonate 
has a pore-size of about 4.5 µm. Using a low-order neighbourhood scheme, it is not 
possible to reproduce all scales simultaneously in the reconstruction. However, it may be 
possible (see below) to combine the different-scale models to derive a better understanding 
of the composite material. 

 
3.2 Simulation of mercury injection 
The pore geometry and topology data are now available to allow the simulation of mercury 
intrusion. The mercury injection curve can be used as a guide of pore network linking bond 
size. Ambegoakar et al (1971) used percolation theory to show that the “percolation 
radius” was associated with the average flow in the network. This radius is where, inserting 
bonds randomly in the network from the largest down, the network flow “switches on” or 
starts to conduct globally. This quantity is derived from MICP experiments and Katz and 
Thomson (1986; 1987) showed that an excellent correlation between the mercury 
breakthrough radius and the absolute permeability of various rock samples could be 
obtained. This early literature is applied to single and two-phase flow in O’Carroll and 
Sorbie (1993). Knackstedt et al (1998) reveal that the simulated capillary pressure curves 
correlated to the heterogeneity even in Berea sandstone. The mercury injection capillary 
pressure (MICP) curve is calculated using the usual invasion percolation algorithm; the 
calculated and experimental curves are shown in Fig. 6.  
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(a)         (b) 

Figure 6. The calculated MICP curve from the invasion percolation simulator, the mercury injection 
curves are from two scaled siltstone reconstructions, (a) two mercury curves are drawn in s separate 
volumetric accumulation, (b) the lower scale (submicron) MICP curve rescaled to continue with 
the higher scale invasion percolation simulator. 
 
Again, the MICP curve shows that the different pore size structures have distinctive 
percolation features. It is obvious that the micron scale siltstone has very low capillary 
pressure, which indicates larger pore sizes. The short length of the curve indicates poor 
connectivity due to loss of the connecting pore throats below the resolution limit. In 
contrast, the higher resolution reconstructed PAM has higher capillary pressure because 
most small pores can be reproduced at this scale and the breakthrough curve is complete in 
this case. It is interesting to note that the end point capillary pressure in the lower scale 
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MICP curve coincides with the beginning capillary pressure of the higher scale curve, 
which suggests that the complete MICP curve can be found by combing the two curves.  
 
4. SUMMARY AND CONCLUSIONS  
In this work, we describe an approach for reconstructing and quantifying the pore 
geometry and topology of porous media. We take as our starting point, 3D rock voxel 
images which are either generated experimentally by micro-tomography or by a pore 
reconstruction method (e.g. the PAM approach). We then apply our pore analysis tools 
(PATs) which are a suite of algorithms which allow us to extract quantified descriptions 
from which we can build network models for simulating two- and three-phase fluid flow at 
the pore scale. Indeed, the central purpose of this paper is to present and discuss these 
detailed algorithms for the pore reconstruction, geometry and topology mapping and 
quantification. The non-overlapping sphere-fitting method is a simple and efficient 
approach for quantifying the geometry and topology of 3D reconstructions of porous 
media. Here, we have applied that method to investigate the multi-scale pore systems of a 
siltstone and a carbonate. The different scale input images lead to reconstructions that have 
distinct pore size distributions. The flow behaviour of the resulting models (here illustrated 
via simulated mercury injection curves) is quite different, as would be expected from 
materials with those contrasting characteristics. The separate mercury injection curves 
seem to represent distinct pore systems in the samples. Those pore systems will, in the real 
sample, interact. Our combined mercury injection curve represents a naive but plausible 
prediction of the bulk flow characteristics of this sample. Further work is necessary to 
investigate a range of ways of combining multi-scale models to attain better estimates of 
bulk flow properties. Nevertheless, the results presented here suggest that there is reason to 
expect that such multi-scale materials can be successfully characterised by separate 
analysis of the properties of their component parts.  
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