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1. ABSTRACT  
Pore throats have been typically considered the place where fine particles are trapped. 
However, the retention apart from filtration of particles smaller than the smallest nominal 
pore throat has been observed in a number of independent laboratory investigations over 
the past several decades. Though too small to be trapped in throats, the particles in these 
experiments were also too large to undergo deep-bed filtration. An explanation for this 
surprising observation could improve models of well productivity and predictions of 
reservoir performance. We studied the retention of fines by straining, a purely geometric 
mechanism, in gaps in a random packing of mono-dispersed spheres. Here gaps are 
defined as the void space between the centers of two neighboring spheres. The 
characterization of gaps in this model sediment has confirmed that their occurrence is 
large enough to trap a considerable number of particles. The geometric analysis of the 
model, combined with a new methodology to compute flow rates in the gaps, has been 
used in an existent straining theory. We adapted the theory to yield a scaling law, namely 
the dependence of straining rate on particle size. The scaling exponents varied largely 
when using different hypothesis. Two limiting cases were identified. In one, the 
probability of trapping in a given gap is assumed to be proportional to the flow rate 
through the gap. In the other, the probability is assumed proportional to the cross-
sectional area in the gap where the particle could be trapped, independent of the local 
flow rate. The exponents in the scaling law obtained in these limiting cases bound the 
experimentally obtained exponent. Another two cases based in geometric arguments gave 
a closer prediction of the scaling of straining rate with particle size.  
 
2. INTRODUCTION 
There are two controlling mechanisms of colloid retention: filtration and straining. 
Filtration is a physicochemical mechanism controlled by electrostatic, chemical and van 
der Waals forces which lead to the attachment/detachment of particles to the filter media. 
Straining is a geometric mechanism. Particles are retained by straining when they arrive 
at constrictions in pore space too small to allow passage. This simple phenomenon of 
straining is still not well understood. Recent experiments (Ryan and Elimelech 1996, 
Bradford et al. 2003) suggest that filtration theory underestimates the extent of retention 
and also that the assumption that straining occurs only at pore throats is too restrictive. 
Bradford observed that the straining rate scales with the size of the strained particles d as 
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(d/D)1.42 while Hall’s geometric argument (1957) yields a dependence of (d/D)1.5, D 
being the size of the soil grains. Our hypothesis is that straining occurs in small gaps 
between pairs of grains in addition to the centers of the pore throats between triplets of 
grains (Figure 1a). Our objective is to determine if the retention of particles in these gaps 
can explain anomalous straining described above. The geometric analysis of a dense 
random packing of equal spheres (Finney packing) will be key to reach this objective. 
The theory of Sharma and Yortsos (1987) is used to predict how the straining rate scales 
with the size of the strained particles.  
  
3. PROCEDURE AND RESULTS 
 3.1 Geometric Characterization of Pore Space 
We have calculated the number, frequency and density of near neighbors and point 
contacts for every sphere and the frequency distribution of gap widths in the Finney 
packing. The Delaunay tessellation identifies of groups of nearest neighbor spheres and 
thus identifies pore throats. The range of interest for gap sizes is close to the size of the 
particles being strained. We investigated gap widths between 0.01R and 0.1R, where R is 
the radius of the soil grains. Gaps sizes bigger than 0.1R are considered part of the 
adjacent pore throat and smaller than 0.01R are considered point contacts. Making an 
analogy with sands, if the average diameter of a sand grain is 0.2 mm, particle size 0.1R 
(R=0.1mm) corresponds to 10 microns and particle size 0.03R corresponds to 3 microns 
(Figure 1b). The frequency of gaps in the Finney packing is shown in Figure 2 together 
with the frequency of pore throats. The empty range between 0.05R and 0.15R 
corresponds to portions of the pore space that are bigger than gaps in the range of interest 
but smaller than pore throats. The density of gaps whose width is between 0.01R and 
0.1R, was found to be 0.15 gaps/R3; for comparison the density of small pore throats in 
the Finney packing is about 0.3 per R3. 
 
 3.2 Calculation of Flow Rates through Gaps 
The steady state flow of a single phase fluid through the Finney packing in pore throats 
was calculated using the approach of Bryant et al. (1993). The calculation provided the 
volumetric flow rate in each throat and the potential in each pore body. These potentials 
were used to compute the local gradient in potential in each gap. The velocities and 
therefore flows in gaps were calculated approximating the flow resistance of the gap by 
that of a slit of length equal to twice the range of capture a and width equal to the gap 
width wgap (Figure 4). The range of capture is the distance from the minimum constriction 
where the particle can get trapped (Figure 1c) and introduces the dependence of the flow 
rate qgap upon the size of the particle being strained (see below). Velocity ugap varies with 
pressure gradient ∇ P as (− 2

gapw /12)(∇ P/µ). Because of the complex spatial distribution 
of gaps in the pore space this calculation is not straightforward. Figure 3 shows a 3D 
view of the gap between two spheres. The plane between the spheres is defined by the 
center of the gap and the centers of the Delaunay cells containing those two spheres. A 
transformation of the spatial coordinates of the centers of the gaps and the centers of the 
Delaunay cells containing the gaps was performed in order to find a correlation between 
spatial coordinates and pressure that allows an estimation of the pressure gradient. This 
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local potential gradient was used to calculate the volumetric flow rate q through the gap 
appropriate to the particle being strained as 2awgapugap. The results showed that the flow 
in the gaps is about three orders of magnitude smaller than the flow in throats.  
 
3.3 Models for Particle Straining 
The theory of Sharma and Yortsos (1987) establishes a mechanistic connection between 
 pore scale straining events and macroscopic behavior considering size exclusion as the 
dominant mechanism for particle trapping. The size of the fine particles (strained 
particles) in this theory is comparable to the pore size. Continuum scale population 
balances have been formulated in terms of frequency distributions of pore throat sizes 
and particle sizes. The dimensional form of the population balance equation for single 
size particles is expressed as follows: 

( )1
( )
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∂ ∂ ∞
                                                                                             Eqn.3.1 

where µ is the ratio of typical pore throat length to length of granular medium, rs is the 
size of suspended particles, C is the concentration of suspended particles in number of 
particles by volume of injected carrier fluid, x is the distance along the length of the 
porous medium, and I is a cumulative local flow rate distribution. The cumulative flow 
rate distribution I is expressed as a function of the pore throat radius, rp. In this case: 
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where uR is the fluid velocity through a throat of radius rp, and fp drp is the fraction of 
pore throats of radius rp. Since the volumetric flow rate through a throat is proportional to 
rp

2uR we substituted rp
2uR by q in equation 3.2. In our work the flow distribution includes 

only gaps. (The inclusion of the pore throats will be the next step in future works after 
testing the theory for gaps.) The straining rate constant is derived from a dimensionless 
form of equation 3.1 as I(1/A)/I(∞), where A is the ratio of the average size of pore 
throats rp to the average size of suspended particles rs. In our case rs/rp is equivalent to 
d/D, hence the dependence of the straining rate constant on the size of the strained 
particle will be I(d/D)/I(∞).  
 
The cumulative flow distribution I(r) expresses the assumption that the probability of a 
particle entering a constriction is proportional to the flow rate into that constriction. We 
also compute the limiting case in which straining is taken to be independent of local flow 
velocity. This assumption reduces the integral I to the frequency distribution of the 
constrictions, and the integrand becomes fp. Two other cases are also presented which test 
the influence of other geometric characteristics of the gaps. In one case the integrand in 
equation 3.2 was taken to be afp (straining rate is proportional to range of capture) and in 
the other arpfp (straining rate proportional to cross-sectional area of the gap). The 
application of this theory to obtain the straining constants is shown in Figure 5. The 
straining constant varies with the size of the strained particles; fitting the variation to a 
power law yields an exponent we term the scaling exponent. The scaling exponents 
obtained were: 4.22 (flow rate weighted), 0.72 (independent of flow rate), 1.32 (range of 
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capture), and 2.02 (cross-section of capture). Figure 6 shows the variation of the scaling 
exponent for each case. A reason for the discrepancy in the scaling exponent may be 
derived from the use of the gap range of capture in the flow calculation. The range of 
capture is taken as the maximum range at which a particle of a given size can be strained 
but there is small chance that the particles get trapped at exactly the maximum range of 
capture. Probably the range of capture is smaller than the one considered. On the other 
hand, only an average velocity obtained from approximating gaps as slits has been 
considered, which provided a lower bound on the actual velocity and a conservative 
estimate of the contribution of gaps to particle straining. This approximation also means 
that point contacts between grains are not included as potential locations for straining. 
Neglecting the effect of previously strained particles and the separation of flow near gaps 
are other approximations that may explain why the scaling exponent obtained with the 
flow weighted theory differs from the ones reported in the literature. 
 
3. CONCLUSIONS AND DISCUSSION 
An independent description of the distribution of gap widths in the Finney packing has 
been made. The volumetric rate of a single phase flow through gaps has been calculated 
by means of a slit approximation of the gap shape. The volumetric flow in gaps in the 
Finney packing, appropriate to the particle being strained, was found to be about three 
orders of magnitude smaller than the volumetric flow in pore throats obtained from a 
steady state flow calculation. A direct measurement of the distribution of gap widths and 
the volumetric flow through them had not been reported before. This information will be 
useful in evaluating transport phenomena influenced by these constrictions. 
 
The assumption that the rate of particle straining is proportional to the flow rate through 
the gaps yields a greater sensitivity of straining rate to particle size than observed 
experimentally. On the other hand, the assumption that the rate of straining is 
independent of flow rate through gaps, and depends only on the frequency of gaps of the 
appropriate size, yields a weaker sensitivity to particle size than observed. This suggests 
that the straining rate does depend on flow rate through gaps, but the dependence is 
weaker than first order. When the range of capture was considered the scaling exponents 
were close to the ones reported from Bradford (2003) and Hall (1957). Hall’s geometric 
model considered crevices between spheres in point contact (analogous to the gaps in this 
work) to be associated with the pore throats, while we considered gaps to be independent 
of throats. Moreover, the model that assumed straining depends only on the frequency 
distribution of gaps was implemented in such a way that the probability of a gap straining 
a particle was independent of particles size (as long as the particle was larger than the gap 
width). Thus this model establishes a lower bound on the scaling behavior of the straining 
rate with particle size.  
 
These observations suggest that the probability of straining in a gap depends on flow rate 
through the gap, but the dependence is weaker than first order. We are led to propose that 
straining in a gap cannot be treated correctly without reference to the throat associated 
with the gap.  
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Figure 1: a) Cross section of a pore body. A gap is defined as the void space between the centers of two 
neighboring grains b) Trapping of particles smaller than pore throats. Spheres 1, 2 and 3 have equal radius and 
represent soil grains. Sphere 4 is is retained in the pore throat. Spheres 5, 6 and 7 are too small to be trapped in 
the pore throat; nevertheless particles 5 and 6 are strained in gaps. Flow is assumed to be normal to the plane of 
the paper. c) Scheme of the range of capture. The particle of diameter d is moving perpendicular to the plane of 
the paper. It will be trapped if it enters the gap, which has width wgap, within a distance a of the center of the gap. 
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Figure 6: Correlation between straining constant and 
particle size calculated with five different methods. 
The flow-weighted method gives the largest 
deviation with respect to the other methods. 

Figure 5: Example of cumulative flow 
distribution in the gaps region. The arrows 
indicate the value of I(r) for different values of 
radius of strained particles (rs). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2: Frequency distribution of gaps in the size 
range of interest for anomalous straining and pore 
throats in Finney packing. Gap radius equals half gap 
width.  

Figure 4: Flow through a gap represented by a 
slit. Arrows represent the direction of the flow. 
The range of capture a is shown in Fig. 1c. 

Figure 3: Spatial view of two spheres in Finney 
packing. The centers of the Delaunay cells (▲) in 
which the spheres are contained and the center of 
the gap between the two spheres lie in the same 
plane. 


